Study on Device Parameters of Carbon Nanotube FETs to Realize Steep Subthreshold Slope of less than 60 mV/decade

Berrin Pinar Algul1, Tetsuo Kodera2, Shunri Oda2, and Ken Uchida1
Tokyo Institute of Technology, Dept. of Physical Electronics2, QNERC2, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Phone/Facsimile: +81-5734-3854, E-mail: berrin@neoc.pol.titech.ac.jp

Abstract
In carbon nanotube FETs (CNFETs) device parameters to observe subthreshold slope (SS) of less than 60 mV/dec have been studied. It is demonstrated, for the first time, that band-to-band tunneling (BTBT) current can be greatly enhanced by reducing the thickness of inter-layer oxide \(t_{\text{int}}\) between substrate and CNT. With a thin \(t_{\text{int}}\) of 10 nm (SiO2) and optimized S/D doping, a steep SS of less than 60 mV/dec can be achieved. The physical mechanisms are also discussed.

1. Introduction
In recent years, carbon nanotube FETs (CNFETs) have attracted great attention because of their promising properties and small sizes [1-3]. In fact, thanks to the excellent electrostatics of CNTs, the ideal subthreshold slope (SS) of 60 mV/dec can be expected [2]. Moreover, the IBM group has recently demonstrated SS of 40 mV/dec by utilizing the band-to-band tunneling (BTBT) phenomena [4]. On the other hand, a number of reported CNFETs show SS of greater than 60 mV/dec even in BTBT regime [5,6]. In order to utilize CNFETs as low-power devices, the conditions to realize SS of less than 60 mV/dec need to be clarified.

In this work, characteristics of CNFETs (Fig. 1) are investigated for various S/D doping and inter-layer oxide (insulator between the substrate and CNTs) thicknesses \(t_{\text{int}}\). As a result, device parameters to realize SS of less than 60 mV/dec have been obtained. Physical mechanisms for the BTBT optimizations are also discussed.

2. Device Structure & Simulation Method
Device structure used in our simulation is shown in Fig. 1 [7]. We assume that CNFETs are fabricated on an inter-layer oxide having a conductive substrate underneath. The gate oxide and inter-layer oxide thicknesses are \(t_{\text{ox}}\) and \(t_{\text{int}}\). The portion of CNT uncovered with the electrodes is chemically doped. The diameter of CNT is \(d_{\text{CNT}}\).

Full band structures of CNTs are firstly calculated. Utilizing the obtained band parameters, several equations are solved self-consistently [7]. For BTBT, the transmission coefficient through the bandgap is calculated with WKB approximation. The drain current is finally obtained using Landauer’s formalism. Fig. 2 shows the experimental and calculated \(I_{\text{d}}-V_{\text{g}}\) characteristics. The excellent agreement including the BTBT region \((V_{\text{g}} \text{ of less than } -0.5 \text{ V})\) demonstrates the validity of our calculation method (BTBT calculation method).

The point of the present simulation is that we included the effect of electrical coupling between the substrate and CNTs. This seems to be a simple effect. However, the effect has not been explicitly taken into account in previous reports.

3. Results and Discussion
The dependence of current-voltage characteristics on \(t_{\text{ox}}\) of devices is firstly examined. Fig. 3 displays \(I_{\text{d}}-V_{\text{g}}\) characteristics of doped-CNFTES with a gate oxide of 1 nm and \(t_{\text{ox}}\) of 10, 50 and 500 nm. For all characteristic shown in this work the source and substrate are grounded. The leakage current, \(I_{\text{off}}\) of CNFETs is notably enhanced for thinner \(t_{\text{ox}}\).

In order to investigate the mechanisms for \(I_{\text{off}}\) enhancement in thinner \(t_{\text{ox}}\) energy band profiles in CNFETs are drawn as shown in Fig. 4. A much steeper band bending is introduced in thinner \(t_{\text{ox}}\) device (Fig. 4(b)), resulting in a shorter BTBT distance and hence a larger BTBT current \(I_{\text{BTBT}}\) in thinner \(t_{\text{ox}}\). The strong band profile modification by enhanced electrical coupling is due to small density-of-state (DOS) of CNT. Because of small DOS, doped carriers easily repelled from S/D edges in thicker \(t_{\text{ox}}\). Whereas, the potential in S/D region is pinned by substrate bias in thinner \(t_{\text{ox}}\). Thus, thinner \(t_{\text{ox}}\) is not good in terms of off-state leakage.

However, it should be noted that CNFETs showing steep SS of 40 mV/dec have thin \(t_{\text{ox}}\) of 10 nm [4]. Therefore, in order to find the device parameter window to observe SS of less than 60 mV/dec, we have modified doping concentration \(N_d\), since BTBT is a strong function of \(N_d\) as well. Fig. 5 shows \(I_{\text{d}}-V_{\text{g}}\) characteristics of CNFETs with \(t_{\text{ox}}\) of 10 nm for various \(N_d\). As \(N_d\) decreases, \(I_{\text{off}}\) is greatly reduced and SS of 50 mV/dec is observed. Again, owing to the small DOS of CNT, channel potential is quite effectively modified by the gate voltage, resulting in steep SS. However, potential profile engineering at S/D edges is critical to have steeper SS. It is found that by combining thin \(t_{\text{ox}}\) and low \(N_d\) steep SS is attainable (Fig. 6). Bandgap is another parameter to control BTBT. Therefore, careful selection of \(d_{\text{CNT}}\), which determines the bandgap of CNTSs, is important.

Fig. 7 represents the linear \(I_{\text{d}}-V_{\text{g}}\) characteristics of the device having the lowest SS value relatively to the others. Fig. 8 depicts \(I_{\text{d}}-V_{\text{g}}\) curves of the same device. Both figures show that the BTBT CNFET device shows normal transistor characteristics.

4. Conclusions
In summary, we performed detailed simulations for BTBT operation and investigated various parameters of CNFETs. As a method to decrease \(I_{\text{off}}\) and enhance BTBT current, we propose controlling thickness of inter-layer and doping profile of S/D area. Correspondingly we showed that SS value of less than 60 mV/dec could be obtained in line with our method. However device operation is strongly related with combination of many parameters such as diameter and bandgap of CNTSs, potential profile around S/D edge regions, \(t_{\text{ox}}\) and \(N_d\). Consideration of proper parameters makes CNFETs a good candidate for high performance and low power applications.

References
Fig. 1: Schematic of CNFET structure simulated in this work and cross-sectional view of the structure across the channel direction. CNFET with a doped source-drain is fabricated on inter-layer oxide having conductive substrate underneath. Gate insulator thickness is denoted by t_{ox} and inter-layer thickness by t_{int}.

Fig. 2: I_d-V_g characteristics of CNFET with a diameter, d_{CNT}, of 1.5 nm for drain voltage V_d of 0.5 V. Good agreement between calculations and experiments demonstrates the validity of our calculation method. Experimental data are from [2]. The area where BTBT is occurred is depicted.

Fig. 3: Calculated I_d-V_g characteristics of CNFET with d_{CNT} of 1.5 nm, a gate oxide thickness, t_{ox} of 1 nm and drain voltage of V_d of 0.5 V. The electrical characteristics are simulated for three different inter-layer oxide thicknesses; namely t_{int} of 10, 50 and 500 nm steps.

Fig. 4: Energy band profile of (19,0) CNFETs with (a) thicker t_{int} of 500 nm and (b) thinner t_{int} of 10 nm. BTBT distance is decreased in thinner t_{int} because of the stronger electrical coupling between conductive substrate and CNT in the thinner t_{int} CNFET.

Fig. 5: Calculated I_d-V_g characteristics of CNFETs with t_{int} of 10 nm for three different doping levels from $1.94x10^9$ m$^{-1}$ to $1.13x10^{10}$ m$^{-1}$. The sharpest SS value of 50 mV/dec for t_{int} of 10 nm is obtained with the lowest S/D doping profile of $1.94x10^9$ m$^{-1}$.

Fig. 6: Subthreshold slope versus ON current, I_{on}, for various CNT diameter, d_{CNT} of 1.5 nm and 2 nm.

Fig. 7: Linear I_d-V_g characteristics of the CNFET showing the sharpest SS value of 50 mV/dec among the calculated device characteristics.

Fig. 8: I_d-V_d characteristics of the same CNFET shown in Fig. 5 for the case of t_{int} is 10 nm. The gate voltages varies from -0.1 V to -0.5 V with steps of -0.1 V.