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1. Introduction 

Recently high-sensitive compact biosensors using Si 
microring optical resonators have been attracting great 
attention [1]. We propose the integrated biosensor chip 
using Si ring resonators, where different receptor is 
immobilized on each sensor (Fig. 1). Signal detection is 
carried out by the matrix of light-input and detection 
waveguides, which are respectively connected to laser 
diodes and photodetectors. The Si rings are arranged at the 
cross points. The unique point of our work different from 
Vos et al. [1] is to use the silicon-binding protein 
(designated Si-tag), which binds to SiO2 surface, as an 
anchoring molecule to immobilize bioreceptor on the Si 
rings in an oriented manner (Fig. 2) [2-4]. In the integrated 
biosensor chip, many kinds of Si-tag-receptor fusions are 
required for high-throughput detection of analyte. So far, 
the Si-tag-receptor fusions were prepared by the recom- 
binant DNA and protein expression technique [3, 4], which 
is time consuming and may be not suitable for preparing 
many kinds of receptors. In contrast, it is known that the 
protein A binds to many kinds of mammalian antibodies 
only by mixing the antibody solution [5]. In the previous 
paper [2], we constructed the fusion protein of Si-tag and 
protein A (Si-tagged protein A) for rapid immobilization of 
various kinds of antibodies (Fig. 3). In this paper, the Si 
ring biosensors were functionalized with various antibodies 
using the Si-tagged protein A as an intermediate binder, 
and the label-free detection of antigen have been achieved. 
2. Experimental 

The principle of the Si-ring biosensor is based on the 
change in the resonance wavelength induced by adsorption 
of some substance on the ring surface. Si ring resonators 
were fabricated by conventional electron-beam lithography 
and dry etching on silicon-on-insulator substrate (Fig. 4). 
The Si-tagged protein A was constructed by standard 
recombinant DNA and protein expression techniques as 
described previously [2]. The measurement setup is shown 
in Figs. 5 and 6. The details were reported in Refs. 3 and 4. 
The measurement procedure is shown in Fig. 7. Briefly, the 
ring is immersed in the solution containing the Si-tagged 
protein A (b), and then immersed in the antibody (mouse 
antibody subtype IgG2a) solution (c). After that, the rings 
are immersed in antigen solution (d). The resonance 
spectra have been measured at each step. In this study, two 
proteins, green fluorescent protein (GFP) and prostate 
specific antigen (PSA), a specific diagnostic marker for the 
prostate cancer, were used as model antigens. 
3. Results and Discussion 
3.1. Immobilization of antibody using Si-tagged protein A 

The resonance wavelength shifted as the reaction step 
proceeded from (a) to (d) in Fig. 7. With the adsorption of 
Si-tagged protein A on the Si ring (b), the resonance- 
wavelength shift saturates at ~0.3 nm (not shown). Next 
the antibody binds with the protein A (c). The reaction 

behavior as a function of the antibody concentration is 
shown in Fig. 8. It is found that the resonance-wavelength 
shift (Fig. 8(b)) fits well to Langmuir’s equation shown in 
the inset of the figure, suggesting that the reaction of the 
antigen with protein A saturates at one monolayer. 
3.2 Antigen detection 

In the next step, we have examined the binding of 
antigen to the antibody immobilized on the ring via 
Si-tagged protein A. First, the reaction between GFP and 
anti-GFP antibody was examined. The result is shown in 
Fig. 9, where the concentrations of GFP and anti-GFP 
antibody were both 10-4 g/ml. The resonance wavelength 
shifts as the reaction steps proceed, indicating successful 
detection of antigen-antibody binding. 

Finally, we have investigated the behavior when the 
antigen concentration is changed. Figure 10 shows the 
results of PSA detection using anti-PSA antibody. The 
sample was first saturated with the excess amount of 
anti-PSA antibody and Si-tagged protein A. Then it was 
exposed to the solution containing PSA followed by the 
washing in 20 mM Tris-HCl buffer and the measurement of 
resonance spectrum. This process was repeated from low 
PSA concentration to high concentration for the same 
sample. At the PSA concentration less than 10-7 g/ml, the 
resonance wavelength shifts toward shorter wavelength. On 
the other hand, at the high concentrations (> 10-6 g/ml) it 
shifts to longer wavelength. This interesting behavior is 
explained by the model shown in Fig. 11. There exist two 
kinds of reactions: (1) dissociation of anti-PSA antibody 
from protein A and (2) binding of PSA to anti-PSA antibody. 
At the low PSA concentration the dissociation may be 
dominant and at the high concentration the binding may be 
dominant. The sensitivity of antigen detection is found to be 
in the order of 10-6 g/ml. The practical biosensor requires 
the sensitivity of 10-9 g/ml, which will be possible by 
employing slot-type waveguide [6] and increase in the 
quality factor of the resonator. 
4. Conclusion 

We have developed the rapid functionalization method 
of Si-ring resonators with antibodies using Si-tagged 
protein A. Since various kinds of antibody can be used as 
receptors for biosensing, this method promises to realize the 
integrated biosensors for high-throughput analyte detection. 
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 Fig. 2. Role of silicon binding 

protein (Si-tag). 
Fig. 3. Role of protein A. Variety of 
receptors (antibodies) can be easily 
immobilized by using Si-tagged protein A.
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Fig. 1. Structure of integrated biosensor 
detectable plural kinds reactions rapidly. 

- 

Fig. 5. Optical measurement system 
with fluidic channel, lensed optical 
fibers and optical microscope. PDMS is 
polydimethylsiloxane.  

Fig. 7. Experimental procedure for detection of 
antigen and antibody reaction. “Measurement” 
means the measurement of optical resonance 
spectrum. Tris-HCl is C4H11NO3ClH for pH 
adjustment.  

Fig. 6. Photograph of optical 
measurement system with fluidic 
channel, and lensed optical fibers. 

Fig. 10. Concentration of PSA 
versus resonance wavelength. 

Fig. 11. Schematic model for the reaction at 
(a) low PSA concentration and (b) high 
PSA concentration. 

Fig. 9. Resonance wavelength shift 
after each treatment step for GFP 
and anti-GFP antibody reaction.  
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Fig. 8. (a) Resonance spectra after each treatment step for antibody. (b) 
Concentration of antibody versus resonance wavelength shift and
Langmuir’s fitting curve.  
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