A Novel Soft-Start Control Circuit for Current-Mode Buck DC-DC Converters

Kimio SHIBATA and Cong-Kha PHAM

The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, 182-8585, Japan Phone: +81-42-443-5165 Email: shibata@vlsilab.ee.uec.ac.jp; pham@ee.uec.ac.jp

I. INTRODUCTION

This paper proposes a high speed soft-start control circuit for Current-Mode Buck DC-DC Converters. The proposed control circuit was fabricated in 0.5μ m standard CMOS technology. The control circuit achieved the soft start characteristics of 150μ s from no load to a maximum load current. It is more than ten times faster than the popular industrial products. The control circuit is not sensitive to the input voltage, operating temperature and inductor value. Analytical modeling, computer simulations, and experimental results on the proposed control circuit confirmed the validity of the proposed design architecture.

II. PROPOSED SOFT-START CONTROL CIRCUIT

Fig. 1 shows the block diagram of the current-mode DC-DC converter with the proposed high speed soft start circuit. The soft start circuit consists the RAMP generator, the E_{AMP} , the C_{AMP} and two analog sum circuits. The RAMP generator generates the SS_{RAMP} , the $VREF_{RAMP}$, V1, and V2. The SS_{RAMP} is a piecewise linear voltage. The $VREF_{RAMP}$ is a linear ramp voltage.

Fig. 1. Block diagram of the current-mode DC-DC buck vonverter with the proposed high speed soft-start circuit.

Fig. 2 shows the Ramp generator circuit. M1 is a variable resistor to generate the VREF_{RAMP}. The output of CMP1-CMP3 controls S1-S3 respectively. The voltage which is divided from the VREF by R11-R14 is compared with the VREF_{RAMP} and activates the comparator respectively to increase the charging

Fig. 2. Ramp generator circuit.

current of C2. The voltage of C2 is the SS_{RAMP} which is a piecewise linear voltage that has four different slopes. The soft-start control circuit operates as follows. (1) The switching is prohibited until the power-on reset signal releases. (2) The PMOS is switched at fixed frequency by a small and fixed duty cycle. (3) The V_{OUT} increase gradually by tracking the VREF_{RAMP}. (4) The VREF_{RAMP} is compared with the VREF, and the slope of the SS_{RAMP} increases when the VREF_{RAMP} exceeds 4/10, 5/10, and 7/10 of VREF respectively. (5) The VREF_{RAMP} and the V_{OUT} reach to the equilibrium value. When the peak current of the inductor increases rapidly, the V_{OUT} does not respond to the change of the inductor current. This causes the overshoot output voltage. Thus, the converter requires wideband width for high slew rate. The Slew Rate (SR) is given by [1]

$$SR = (A_V)(V_O)(2\pi f_0)$$
 (1)

The transfer function H(s) of the power stage (L, C, R_L) is given by [2]-[4].

$$H(s) = 1/[1 + (s/\omega Q) + (s^2/\omega^2)]$$
(2)

$$f_0 = 1/2\pi\sqrt{LC} \tag{3}$$

The f_0 is the unity gain frequency. The transfer function T(s) of the current-mode converter is given by [2]-[4].

$$T(s) = T_0 \frac{1 + \frac{s}{\omega_{z1}}}{1 + \frac{s}{\omega_{p1}}} \frac{1 + \frac{\omega_{zc}}{s}}{1 + \frac{s}{\omega_{p2}}} \frac{1}{1 + \frac{s}{\omega_{nQn}} + \frac{s^2}{\omega_n^2}}$$
(4)

Fig. 3. Soft-Start characteristics of $V_{\rm OUT}$ at $I_{\rm OUT}{=}1mA,$ 0.1A, 0.2A, 0.4A, and 0.8A. L=3.3 $\mu H.$

Fig. 4. Soft-Start characteristics of $I_{\rm L}$ at $I_{\rm OUT}{=}1\text{mA},$ 0.1A, 0.4A, 0.8A. L=3.3 $\mu\text{H}.$

The SR of the SS_{RAMP} increases when the $VREF_{RAMP}$ exceeds 4/10, 5/10 and 7/10 of the VREF respectively.

1st SR= $2.5mV/\mu s$, $0V \le VREF_{RAMP} \le 0.16V$ 2nd SR= $5.0mV/\mu s$, $0.16V \le VREF_{RAMP} \le 0.20V$ 3rd SR= $7.5mV/\mu s$, $0.20V \le VREF_{RAMP} \le 0.28V$ 4th SR= $12.5mV/\mu s$, $0.28V \le VREF_{RAMP} \le 0.40V$

Since the E_{AMP} is clamped to the SS_{RAMP} by the C_{AMP} soon after power up, the V_C is equal to the SS_{RAMP} . At this phase, there is no voltage gain of the E_{AMP} since its output stage is OFF. However, when the E_{AMP} begins linear operation, the V_C is separated from the SSRAMP. Since the DC-DC Converter operates the current-mode. the unity gain frequency f_0 increases. In the proposed circuit, the dc bias V2 and V1 are 400mV and 350mV respectively in order to reduce the soft-start time. A linear ramp voltage of the VREF_{RAMP} and a piecewise linear voltage of the SS_{RAMP} makes a small differential input voltage for the E_{AMP} during the power up.

III. MEASURED RESULTS

The measurement result of the DC-DC Converter with the proposed high speed soft-start control circuit is shown in Fig.3 - Fig.6. The proposed circuit has measured at V_{IN} =3.0V, V_{OUT} =0.8V, VREF=0.4V, f_{sw} =1.2MHz. The CE is a chip enable. There was no major influence observed on the soft-start characteristics by entire operating temperature range and input voltage range, and widely selected inductor value. Fig. 7 shows the chip photo and size is is 1.28mm x 1.62mm.

IV. CONCLUSION

The proposed control circuit has been simulated and implemented in 0.5μ m standard CMOS technology. The control

Fig. 5. Soft-Start characteristics of V_{OUT} at I_{OUT}=0.2A, L=1 μ H, 3.3 μ H, 10 μ H and 15 μ H.

Fig. 6. Soft-Start characteristics of the operating temperature at -50°C, +25°C, and +85°C at I_{OUT} =1mA.

circuit achieved the soft start characteristics of 150μ s from no load to a maximum load current. The control circuit does not sensitive with the inductor value, the input voltage and the operating temperature. Analytical modeling, computer simulations, and experimental results on the proposed control circuit confirmed the validity of the proposed design architecture. Thus, the proposed high speed soft-start control circuit for implementing to the DC-DC converter will be useful for extending the battery operating time.

REFERENCES

- National Semiconductor Corporation, "Predicting OP Amp Slew Rate Limited Response," Linear Brief 19, Aug. 1972.
- [2] R.B. Ridley, "An Accurate and Practical Small-Signal Model for Current-Mode Control," Ridley Engineering, pp.1-23, 1999.
- [3] V. Vorpérian, "Fast analytical techniques for electrical and electronic circuits," Cambridge University Press, ISBN 0-521-62442-8, pp.432-459, 2004.
- [4] S. Hong, B. Cho, and H. Ahn, "The Unified Model for Current-Mode Control," Journal of Circuits, Systems and Computers, vol.13, no.4, pp.725-736, Apr. 2002.

Fig. 7. Chip photograph