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Abstract 
A high-performance poly-Si TFTs is reported without 

additional hydrogenation or advanced phase crystallization 
techniques. Excellent electrical characteristics are attributed to 
the promising high-κ NiTiO3 by sol-gel spin-coating and the 
trap passivation by fluorine implantation. Meanwhile, the 
hot-carrier reliability is greatly improved by the robust Si-F 
bonds. 

Introduction 
Polycrystalline silicon thin-film transistors (poly-Si TFTs) 

have attracted much attention because of their various 
applications, such as driving circuits of the active matrix liquid 
crystal displays (AM-LCDs) and those of the active matrix 
organic light emitting diode displays (AM-OLEDs) [1] [2]. 
Nickel-titanium oxide (NiTiO3) deposited by physical vapor 
deposition was shown to be a promising high dielectric 
constant (high-κ) gate dielectric [3]. Recently, we have 
reported a p-channel poly-Si TFT with the NiTiO3 gate 
dielectric by sol-gel spin-coating [4]. To further improve the 
TFT characteristics, defect passivation such as hydrogen 
plasma treatment is often necessary. However, weak Si-H 
bonds tend to degrade device reliability. Fluorine  
implantation was reported to passivate defects by more robust 
Si-F bonds [5]. In this paper, high performance n-channel 
poly-Si TFTs is reported by taking advantage of the high-κ 
NiTiO

 

As shown in Fig. 2, an accumulation capacitance density 
of 410 nF/cm

3 gate dielectric by sol-gel spin-coating and the fluorine 
implantation. 

Device Fabrication and Experimental Procedures 
The schematic of the poly-Si TFT with TaN metal gate 

and NiTiO3 gate dielectric is shown in Fig. 1. First, 50-nm 
amorphous silicon (a-Si) was deposited on 550-nm SiO2 by 
low-pressure chemical vapor deposition (LPCVD) at 550°C, 
followed by the fluorine implantation with projected ion range 
at the middle of a-Si film and dosage of 5 × 1013cm-2. The a-Si 
layer was subjected to recrystallization at 600°C for 24 h in N2 
ambient, and the photolithography patterning of the active 
region. The N+ source and drain were done by phosphorus 
implantation and activation at 600°C for 12 h. Next, NiTiO3 
film was spin-coated on a 3-nm SiO2 layer using a NiTiO3 
sol-gel solution and then baked at 200°C for 10 min to remove 
the solvent. The sol-gel solution was synthesized by dissolving 
nickel acetate tetrahydrate [Ni(OOCCH3)2．4H2O] and titanium 
isopropoxide [Ti(OiPr)4] in 2-methoxyethanol. The NiTiO3 
spin-coating process was repeated for 3 times to obtain a film 
thickness of about 50 nm. After thermal treatment at 400°C in 
O2 ambient for 20 min, the samples were subjected to 
additional rapid thermal annealing (RTA) at 500°C for 30 s in 
N2 ambient. The gate was defined by TaN deposition and 
lift-off process. Then, a 400 nm SiO2 passivation layer was 
deposited by plasma-enhanced chemical vapor deposition 
(PECVD). To open the contact holes, SiO2 and NiTiO3 were 
etched by buffered oxide etch (BOE) and HF:H2O = 50:1, 

respectively. Finally, aluminum pads were defined. The poly-Si 
TFT with NiTiO3 gate dielectric but without fluorine 
implantation was also fabricated using the same process flow 
for comparison. 

Results and Discussion 

2 is achieved for the NiTiO3 film from 
capacitance-voltage (C-V) measurement, corresponding to the 
equivalent-oxide thickness (EOT) of 8.4 nm and the effective 
dielectric constant value of 23.2. Figure 3 shows the transfer 
characteristics of the poly-Si TFTs with and without fluorine 
implantation at VDS = 0.1 V and 1 V, respectively. The 
electrical characteristics of the fluorine-implanted TFT were 
significantly improved compared to the one without. The 
threshold voltage (VTH) and the subthreshold swing were 
decreased from 1.49 to 1.09 V and from 262 to 207 mV/dec., 
respectively. In addition, the field-effect mobility was 
increased from 47.5 to 56.7 cm2/V-s. The output characteristics 
of the TFTs with and without the fluorine implantation are 
shown in Fig. 4. The driving current of the fluorine-implanted 
TFT had about 60 % improvement at VGS-VTH = 4 V, compared 
to that without fluorine implantation. The improvements of the 
electrical performance could be attributed to the passivation of 
interface states at the gate dielectric/poly-Si interface and trap 
states in the poly-Si film by the incorporation of fluorine [5]. 

 In order to verify the effect of fluorine passivation, the 
effective trap-state density (Ntrap) at grain boundaries was 
calculated from the grain-boundary trapping model proposed 
by Levinson et al. [6]. Figure 5 depicts the ln[(IDS/(VGS − VFB)] 
versus 1/(VGS − VFB)2 at VDS = 0.1 V. The extracted Ntrap were 
3.8 × 1012 cm-2 and 6.6 × 1012 cm-2 for the TFTs with and 
without fluorine implantation, respectively. This result 
indicated that the incorporation of fluorine can effectively 
passivate the trap states at grain boundaries. 

Additionally, hot-carrier stress was carried out by VDS = 
VGS = 4V to investigate the instability of TFTs. The VTH shift 
due to the broken Si-Si and Si-H bonds at the gate dielectric/ 
poly-Si interface during hot-carrier stress is shown in Fig. 6. 
The TFT with fluorine implantation has better immunity 
against the hot-carrier stress owing to stronger Si–F bond 
compared with weaker Si–H and Si–Si bonds in the poly-Si 
channel region. Finally, the key parameters were summarized 
in Table I. 

Conclusion 
High-performance poly-Si TFTs with high-κ NiTiO3 gate 

dielectric by sol-gel spin-coating and fluorine implantation 
have been demonstrated. The superior dielectric properties of 
high-κ NiTiO3 lead to high gate capacitance density. Both the 
DC electrical characteristics and hot-carrier reliability are 
significantly improved by the fluorine implantation and 
NiTiO3 gate dielectric, suggesting its promise for high-speed 
and low-power display driving circuits. 
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Fig. 1. The schematic of the poly-Si TFT with NiTiO3 gate dielectric.  
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Fig. 5. Effective trap-state densities of poly-Si TFTs with and without 
fluorine implantation.. 
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Fig. 2. C-V curve of the high-κ NiTiO3 capacitor.  
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Fig. 6. Threshold voltage shift versus stress time for poly-Si TFTs 
with and without fluorine implantation. 

 
Table I. Summary of electrical characteristics for poly-Si TFTs with 
and without fluorine implantation. 
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Fig. 3. Transfer characteristics of poly-Si TFTs with and without 
fluorine implantation. 
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Fig. 4. Output characteristics of poly-Si TFTs with and without 
fluorine implantation. 
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