Low-turn-on voltage heterojunction bipolar transistors with a C-doped $In_xGa_{1-x}As_{1-y}Sb_y$ base grown by metalorganic chemical vapor deposition

Takuya Hoshi, Hiroki Sugiyama, Haruki Yokoyama, Kenji Kurishima, and Minoru Ida

NTT Photonics Laboratories, NTT Corporation 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa, 243-0198 Japan.

Phone: +81-46-240-2793 E-mail: hoshi.takuya@lab.ntt.co.jp

1. Introduction

InP-based heterojunction bipolar transistors (HBTs) are key devices for high-bit-rate optical communications systems. To date, InGaAs has been widely used as a base-layer material for InP-based HBTs. With these material systems, however, it is difficult to reduce the current turn-on voltage due to the presence of type-I conduction-band-edge discontinuity at the emitter-base heterojunction.

Recently, InP-based HBTs with a GaAsSb base have attracted a lot of attention because they have a favorable type-II band lineup for npn HBT structures.¹⁻³⁾ For these material systems, the turn-on voltage is determined simply by the base band-gap energy. Thus, further reduction of the turn-on voltage is possible by employing narrow-band-gap material, such as InGaAsSb.^{4,5)} In fact, Chen et al. demonstrated InP/In_{0.37}Ga_{0.63}As_{0.89}Sb_{0.11} HBTs that exhibit the base-emitter, $V_{\rm BE}$, turn-on voltage as low as 0.35 V at collector current density, $J_{\rm C}$, of 1 A/cm². These HBTs were grown by molecular beam epitaxy with Be as a p-type dopant. On the other hand, there has been no report of In-GaAsSb-base HBTs grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate InP-based HBTs with a C-doped InGaAsSb base grown by MOCVD. One of the lowest collector turn-on voltages of 0.353 V at $J_{\rm C}$ of 1 A/cm² was obtained for a HBT with a highly C-doped In_{0.22}Ga_{0.78}As_{0.73}Sb_{0.27} base.

2. Experiments

All the samples were grown on semi-insulating (001) InP substrates in a low-pressure vertical MOCVD reactor. Carbon tetrabromide was used for *p*-type dopant for the InGaAsSb base. The details are described elsewhere.⁶⁾ Alloy compositions of $In_xGa_{1-x}As_{1-y}Sb_y$ films were determined by x-ray diffraction and inductively coupled plasma atomic emission spectroscopy. Photoluminescence (PL) was used to investigate the relationship between alloy composition and band structure of $In_xGa_{1-x}As_{1-y}Sb_y$.

The HBT-layer structures consist of an n^+ InP/InGaAs subcollector, a 200-nm-thick unintentionally doped InP collector, a 32-nm-thick p^+ In_xGa_{1-x}As_{1-y}Sb_y base, a Table 1. Base layer of the HBTs.

•	C-doped $In_xGa_{1-x}As_{1-y}Sb_y$ base			
	(x, y) =	= (0, 0.50) (0.11, 0.39) (0.22, 0.27)		
	<i>p</i> (cm ⁻³)	4.3×10 ¹⁹	3.3×10 ¹⁹	1.2×10 ¹⁹
	$R_{B,sh}$ (Ω /sq.)	2110	2318	12167

70-nm-thick unintentionally doped InP emitter, and a n^+ InGaAs/InP cap layer. Hole concentrations, solid In and Sb contents (*x*, *y*), and base sheet resistances, R_{B,sh}, determined by transmission-line-measurement, are summarized in Table I. The HBT-layer structures, except for the base, were the same among the samples. For comparison, the HBTs with a C-doped GaAs_{0.50}Sb_{0.50} base nearly lattice-matched to InP were also prepared.

Devices with an emitter junction area of $100 \times 100 \ \mu\text{m}^2$ were fabricated by conventional wet-etching and lift-off process. The Ti/Pt/Au electrode metals were deposited by electron-beam evaporation. The direct current characteristics of the HBTs were measured using an Agilent 4156C semiconductor parameter analyzer.

3. Results and discussion

Figure 1 shows typical excitation-power dependence of PL spectra of approximately 100-nm-thick undoped In_{x} . Ga_{1-x}As_{1-y}Sb_y films at 6.5 K. For GaAs_{0.50}Sb_{0.50} film, we observed near-band-edge (NBE) emission at 0.798 eV and pronounced broad emission originating from spacially separated type-II recombination at the InP/GaAsSb interface at around 0.72 - 0.76 eV. On the other hand, spectra for In_{0.27}Ga_{0.73}As_{0.70}Sb_{0.30} film exhibited single-peak NBE emission at around 0.66 eV and no type-II emission was observed in the measurement range. The peak energy was approximately 0.14 eV lower than that for GaAs_{0.50}Sb_{0.50} film.

Figure 2 shows typical Gummel plots for the HBTs with a C-doped $In_xGa_{1-x}As_{1-y}Sb_y$ base. Plots for the GaAsSb-base HBT are also shown for comparison. Clearly, the V_{BE} turn-on voltage decreases with increasing solid In

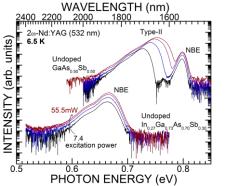


Fig. 1. Excitation-power dependence of PL spectra of undoped $GaAs_{0.50}Sb_{0.50}$ and $In_{0.27}Ga_{0.73}As_{0.70}Sb_{0.30}$ films.

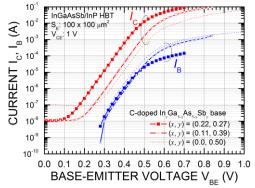


Fig. 2. Gummel plots for the HBTs with a C-doped In_{x} -Ga_{1-x}As_{1-y}Sb_y and GaAs_{0.50}Sb_{0.50} base.

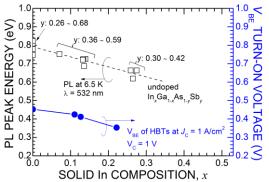


Fig. 3. PL peak energy of undoped $In_xGa_{1-x}As_{1-y}Sb_y$ films (open squares) and V_{BE} turn-on voltages (closed circles) vs. solid In content *x*.

content, x. Figure 3 shows the variation in NBE-emission-peak energies for the $In_xGa_{1-x}As_{1-y}Sb_y$ films and $V_{\rm BE}$ turn-on voltage at $J_{\rm C} = 1$ A/cm² for the In_x- $Ga_{1-x}As_{1-y}Sb_{y}$ -base HBTs as a function of x. NBE peaks for undoped $In_xGa_{1-x}As_{1-y}Sb_y$ films are strongly dependent on x and linearly decrease with increasing x for $x \le 0.27$. Furthermore, as x increases, not only the PL peak energy but also $V_{\rm BE}$ turn-on voltage decreases. Built-in potential of the p^+ -*n* junction is determined by band gap of the *p*-type layer and conduction band offset ($\Delta E_{\rm C}$) at the interface.⁷) For nearly lattice-matched p^+ -InGaAsSb/n⁻-InP, V_{BE} turn-on voltage is approximately independent of $\Delta E_{\rm C}$ and the band gap of base layer is dominant when x is relatively low. Thus, this linear dependence on $V_{\rm BE}$ turn-on voltage is due to the band-gap reduction in the $In_xGa_{1-x}As_{1-y}Sb_y$ base with increasing x. The HBTs with an $In_{0.22}Ga_{0.78}As_{0.63}Sb_{0.27}$ base exhibited $V_{\rm BE}$ turn-on voltage of 0.353 V at $J_{\rm C} = 1$ A/cm². This value is approximately 0.15-V lower than that of the HBTs with an InGaAs base. Note that slight solid-Sb-content, y, dependence of PL peak energy was observed for the ranges of $0.26 \le y \le 0.68$.

The ideality factors for the base current, $n_{\rm B}$, are very close to unity for the InGaAsSb-base HBTs. These values are slightly lower than those for the GaAsSb-base HBTs ($n_{\rm B} \sim 1.1$). The lower ideality factor suggests that nonideal recombination current in the space charge region is suppressed owing to the reduction of the potential barrier at the type-II emitter-base heterojunction.

Figure 4 shows the collector current dependence of dc

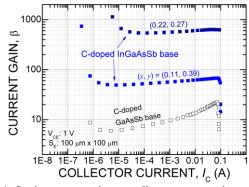


Fig. 4. Static current gain vs. collector current characteristics for the HBTs.

current gain, β . For the In_{0.11}Ga_{0.89}As_{0.61}Sb_{0.39} and In_{0.22}Ga_{0.78}As_{0.63}Sb_{0.27} base, the maximum β values are 67.5 and 632.3 at $J_{\rm C}$ of around 6×10^2 A/cm² against the base sheet resistance of 2318 and 12167 Ω /sq, while the ideality factor, which is derived from the relationship $\beta \sim I_{\rm C}^{(1-1/m)}$, is nearly unity (m = 1.04 and 1.03). These results indicate that the current gain for the InGaAsSb-base HBTs is primary determined by the minority-electron transport and/or recombination current in the neutral base region. Thus, it is necessary to improve the crystal quality of the InGaAsSb base in order to increase the current gain.

4. Summary

InP-based HBTs with a C-doped InGaAsSb base grown by MOCVD were demonstrated. To reduce the band-gap energy of the base, we grew InGaAsSb films and found that PL NBE-peak energy decreased with increasing solid In content in the films. $V_{\rm BE}$ turn-on voltage of the In-GaAsSb-base HBTs also decreased due to the band-gap reduction in In_xGa_{1-x}As_{1-y}Sb_y base. Finally, the fabricated devices exhibited a significant reduction of turn-on voltage to 0.353 V at a $J_{\rm C} = 1$ A/cm². These results make the In-GaAsSb-base HBTs very attractive for use in low-power ICs.

Acknowledgements

The authors thank M. Mitsuhara for fruitful discussions. **References**

- R. Bhat, W. P. Hong, C. Caneau, M. A. Koza, C. K. Nguyen, and S. Goswami, Appl. Phys. Lett. 68 (1996) 985.
- [2] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts and S. P. Watkins, IEEE Electron Device Lett. 22 (2001) 361.
- [3] H. G. Liu, O. Ostinelli, Y. P. Zeng and C. R. Bolognesi, IEEE Electron Device Lett. 28 (2007) 852.
- [4] W. Snodgrass, B. -R. Wu, W. Hafez, K. -Y. Cheng, and M. Feng, IEEE Electron Device Lett. 27 (2006) 84.
- [5] S.-H. Chen, K.-H Teng, H.-Y Chen, S.-Yu Wang, J.-I. Chyi, IEEE Electron Device Lett. 29 (2008) 655.
- [6] T. Hoshi, H. Sugiyama, H. Yokoyama, K. Kurishima, M. Ida, and S. Yamahata, *Proc. Int. Conf. Indium Phosphide Relat. Mater.* May 2010, pp. 92-93.
- [7] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, (Wiley Interscience, New York, 1998), p. 87-94.