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1. Introduction

GaN has superior physical properties for power devices.
For power transistors, normally-off operation is strongly
required from the fail-safe point of view and several struc-
tures of normally-off GaN-based transistors have been
proposed. In these structures, a new type of GaN-based
transistor with a high-threshold voltage, a low on-state re-
sistance, and a high-breakdown voltage, so-called Al-
GaN/GaN Hybrid MOS-HFET, has been demonstrated
[1-3]. To realize high performance GaN MOSFET, a high
quality gate insulator is required. SiO, is a good candidate
as a gate insulator of GaN MOSFET since SiO, has a larger
direct wide bandgap, a larger conduction band offset and a
larger valence band offset on GaN, respectively [4]. In this
paper, a high quality SiO, on GaN formed by Microwave
(2.45 GHz: MW) Plasma Enhanced Chemical Vapor Depo-
sition (PECVD) is demonstrated. Then an AlIGaN/GaN Hy-
brid MOS-HFET with a high field-effect mobility to which
MW-PECVD SiO, is applied is also demonstrated.
2. Experiments

MW plasma is capable of exiting a low-electron tem-
perature (<1 eV) and a high-electron density (>10'* cm™) at
the substrate surface position [5, 6]. In order to investigate
the interface properties of SiO,/GaN and the electrical cha-
racteristics of SiO,, n-type GaN on Si (111) substrates were
applied for fabrication of GaN MOS capacitors. SiO, films
were formed by MW-PECVD and Capasitive Coupled
Plasma (CCP) CVD. We also applied these SiO, films to
AlGaN/GaN Hybrid MOS-HFET. The structure of Al-
GaN/GaN Hybrid MOS-HFET is shown in Fig. 1. After
mesa etching and recessed region etching to define the
channel region by RIE, SiO, films were formed by
MW-PECVD and CCP-CVD as the gate insulator. Then
gate, source and drain electrodes were fabricated by sput-
tering.
3. Results and Discussions

Fig. 2 shows the energy distribution of the interface
state density (D) of SiO,/GaN. Dy is estimated by applying
the Terman method to the Capacitor-Voltage (C-V) charac-
teristics at 150°C [7]. The Dj of the GaN MOS capacitor
with MW-PECVD SiO, is lower than that with CCP-CVD
Si0,. Fig. 3 shows the Current density-Electric field (J-E)
characteristics of these GaN MOS capacitors at 200°C. The
MW-PECVD SiO; has a high-breakdown field with over 11
MV/cm. Fig. 4 shows the charge-to-breakdown Qpq of these
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GaN MOS capacitors. The Qpg with MW-PECVD SiO; is
over one order of magnitude higher than that with
CCP-CVD SiO,. It is suggested that their results are caused
by plasma damage such as ion bombardment and charge-up
by CCP-CVD SiO, deposition on GaN since CCP excites
electrons to very high temperature.

An annealing after SiO, deposition on GaN is well
known to be effective to decrease D;; of SiO,/GaN [8, 9].
Fig. 5 shows the energy distribution of the D;; of GaN MOS
capacitor with and without annealing after MW-PECVD
SiO, deposition. The D is also decreased by annealing.
Moreover, the Qpg of GaN MOS capacitors with and with-
out annealing after MW-PECVD SiO, deposition are eva-
luated. As shown in Fig. 6, the Qpg of GaN MOS capacitor
with annealing is about one order of magnitude higher than
that without annealing. These results indicate that the an-
nealing after SiO, deposition on GaN is effective not only
for decreasing D;; of SiO,/GaN but also for improving Qpg
of SlOz

Fig. 7 shows the transfer characteristics of AlGaN/GaN
Hybrid MOS-HFETs with MW-PECVD SiO, and
CCP-CVD SiO, and Fig. 8 shows the field-effect mobility
evaluated from the transfer characteristics of these
MOS-HFETs. These SiO, films were annealed after the
deposition. The on-state characteristic of MOS-HFET with
MW-PECVD Si0, is superior to that with CCP-CVD SiO,.
The field-effect mobility of MOS-HFET with MW-PECVD
Si0O; is higher in all channel length and the MOS-HFET has
the maximum field-effect mobility with 161 cm?®/Vs at the
channel length of 50 um.

4. Conclusion

We have shown the formation of a high quality gate
insulator for GaN MOSFET by depositing SiO, by
MW-PECVD and annealing after deposition. We also
demonstrated an AlGaN/GaN Hybrid MOS-HFET with a
high field-effect mobility by applying this gate insulator.
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Fig. 1. A schematic cross section of AlGaN/GaN Hybrid

MOS-HFET.
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Fig. 2. Dj; of GaN MOS capacitors with MW-PECVD SiO,

and CCP-CVD SiO, calculated from the C-V characteristics at

150°C. SiO, films were not annealed after deposition.
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J-E characteristics of GaN MOS capacitors with
MW-PECVD SiO, and CCP-CVD SiO, at 200°C. SiO, films
were not annealed after deposition. Electric field is defined
(Vo-Veg)/EOT (V,: gate voltage, Vig: flatband  voltage shift,
EOT: equivalent oxide thickness)
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Fig. 4. Charcge-to-breakdown Qpg of GaN MOS capacitors
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Fig. 5. Dy of GaN MOS capacitors with and without annealing

after MW-PECVD SiO, deposition calculated from the C-V
characteristics at 150°C. (Annealing: 800°C, 30 min)
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Fig. 6. Charge-to-breakdown Q,q of GaN MOS capacitors with
and without annealing after MW-PECVD SiO, deposition cal-
culated from the C-V characteristics at 150°C. (Annealing:
800°C, 30 min)
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Fig. 7.
M%)S-HF ETs with MW-PECVD SiO, and CCP-CVD SiO,. SiO,
films were annealed at 800°C for 30 min after deposition.
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Fig. 8. Field-effect mobility versus channel length of Al-
GaN/GaN Hybrid MOS-HFETs with MW-PECVD SiO, and
CCP-CVD Si0,. SiO, films were annealed at 800°C for 30 min

after deposition.
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