High Integrity SiO₂ Gate Insulator Formed by Microwave-Excited PECVD for AlGaN/GaN Hybrid MOS-HFET on Si Substrate

Hiroshi Kambayashi^{1,3}, Takehoko Nomura¹, Sadahiro, Kato¹, Hirokazu Ueda², Akinobu Teramoto³,

Shigetoshi Sugawa^{3, 4}, and Tadahiro Ohmi³

¹ Advanced Power Device Reserch Association

2-4-3, Okano, Nishi-ku, Yokohama, 220-0073, Japan

Phone: +81-45-311-1218 E-mail: kambayashi.hiroshi@apd.fites.jp

² Tokyo Electron Technology Deveropment Institute Inc. 3-2-1, Oosawa, Izumi-ku, Sendai, 981-3137, Japan

³ New industry Creation Hatchey Center, Tohoku Univ. 6-6-10, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

⁴ Graduate School of Engineering, Tohoku Univ. 6-6-11, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

1. Introduction

GaN has superior physical properties for power devices. For power transistors, normally-off operation is strongly required from the fail-safe point of view and several structures of normally-off GaN-based transistors have been proposed. In these structures, a new type of GaN-based transistor with a high-threshold voltage, a low on-state resistance, and a high-breakdown voltage, so-called Al-GaN/GaN Hybrid MOS-HFET, has been demonstrated [1-3]. To realize high performance GaN MOSFET, a high quality gate insulator is required. SiO₂ is a good candidate as a gate insulator of GaN MOSFET since SiO₂ has a larger direct wide bandgap, a larger conduction band offset and a larger valence band offset on GaN, respectively [4]. In this paper, a high quality SiO₂ on GaN formed by Microwave (2.45 GHz: MW) Plasma Enhanced Chemical Vapor Deposition (PECVD) is demonstrated. Then an AlGaN/GaN Hybrid MOS-HFET with a high field-effect mobility to which MW-PECVD SiO₂ is applied is also demonstrated.

2. Experiments

MW plasma is capable of exiting a low-electron temperature (<1 eV) and a high-electron density (> 10^{12} cm⁻³) at the substrate surface position [5, 6]. In order to investigate the interface properties of SiO₂/GaN and the electrical characteristics of SiO₂, n-type GaN on Si (111) substrates were applied for fabrication of GaN MOS capacitors. SiO₂ films were formed by MW-PECVD and Capasitive Coupled Plasma (CCP) CVD. We also applied these SiO₂ films to AlGaN/GaN Hybrid MOS-HFET. The structure of Al-GaN/GaN Hybrid MOS-HFET is shown in Fig. 1. After mesa etching and recessed region etching to define the channel region by RIE, SiO₂ films were formed by MW-PECVD and CCP-CVD as the gate insulator. Then gate, source and drain electrodes were fabricated by sputtering.

3. Results and Discussions

Fig. 2 shows the energy distribution of the interface state density (D_{it}) of SiO₂/GaN. D_{it} is estimated by applying the Terman method to the Capacitor-Voltage (*C-V*) characteristics at 150°C [7]. The D_{it} of the GaN MOS capacitor with MW-PECVD SiO₂ is lower than that with CCP-CVD SiO₂. Fig. 3 shows the Current density-Electric field (*J-E*) characteristics of these GaN MOS capacitors at 200°C. The MW-PECVD SiO₂ has a high-breakdown field with over 11 MV/cm. Fig. 4 shows the charge-to-breakdown Q_{bd} of these GaN MOS capacitors. The Q_{bd} with MW-PECVD SiO₂ is over one order of magnitude higher than that with CCP-CVD SiO₂. It is suggested that their results are caused by plasma damage such as ion bombardment and charge-up by CCP-CVD SiO₂ deposition on GaN since CCP excites electrons to very high temperature.

An annealing after SiO₂ deposition on GaN is well known to be effective to decrease D_{it} of SiO₂/GaN [8, 9]. Fig. 5 shows the energy distribution of the D_{it} of GaN MOS capacitor with and without annealing after MW-PECVD SiO₂ deposition. The D_{it} is also decreased by annealing. Moreover, the Q_{bd} of GaN MOS capacitors with and without annealing after MW-PECVD SiO₂ deposition are evaluated. As shown in Fig. 6, the Q_{bd} of GaN MOS capacitor with annealing is about one order of magnitude higher than that without annealing. These results indicate that the annealing after SiO₂ deposition on GaN is effective not only for decreasing D_{it} of SiO₂/GaN but also for improving Q_{bd} of SiO₂.

Fig. 7 shows the transfer characteristics of AlGaN/GaN Hybrid MOS-HFETs with MW-PECVD SiO₂ and CCP-CVD SiO₂ and Fig. 8 shows the field-effect mobility evaluated from the transfer characteristics of these MOS-HFETs. These SiO₂ films were annealed after the deposition. The on-state characteristic of MOS-HFET with MW-PECVD SiO₂ is superior to that with CCP-CVD SiO₂. The field-effect mobility of MOS-HFET with MW-PECVD SiO₂ is higher in all channel length and the MOS-HFET has the maximum field-effect mobility with 161 cm²/Vs at the channel length of 50 μ m.

4. Conclusion

We have shown the formation of a high quality gate insulator for GaN MOSFET by depositing SiO_2 by MW-PECVD and annealing after deposition. We also demonstrated an AlGaN/GaN Hybrid MOS-HFET with a high field-effect mobility by applying this gate insulator. **References**

- [1] W. Huang et al, in Proc. 20th ISPSD, (2008) 295.
- [2] T. Oka et al, IEEE EDL, **29** (2008) 668.
- [3] H. Kambayashi et al, SSE, 54 (2010) 660.
- [4] J. Robertson et al, JAP, **100** (2006) 014111-1.
- [5] T. Goto et al, JJAP, 43 (2004) 1784.
- [6] T. Ohmi et al, JPD: AP, Vol. 39, (2006) R1.
- [7] L. M. Terman, SSE, 5 (1962) 285.
- [8] Y. Niiyama et al, PSS(a), 204 (2007) 2032.

[9] H. Kambayashi et al, IEEE EDL, 28 (2007) 1077.

Fig. 1. A schematic cross section of AlGaN/GaN Hybrid MOS-HFET.

Fig. 2. D_{it} of GaN MOS capacitors with MW-PECVD SiO₂ and CCP-CVD SiO₂ calculated from the *C*-*V* characteristics at 150°C. SiO₂ films were not annealed after deposition.

Fig. 3. *J-E* characteristics of GaN MOS capacitors with MW-PECVD SiO₂ and CCP-CVD SiO₂ at 200°C. SiO₂ films were not annealed after deposition. Electric field is defined (Vg-V_{FB})/EOT (Vg: gate voltage, V_{FB}: flatband voltage shift, EOT: equivalent oxide thickness)

Fig. 4. Charge-to-breakdown Q_{bd} of GaN MOS capacitors with MW-PECVD SiO₂ and CCP-CVD SiO₂. SiO₂ films were not annealed after deposition.

Fig. 5. D_{it} of GaN MOS capacitors with and without annealing after MW-PECVD SiO₂ deposition calculated from the *C-V* characteristics at 150°C. (Annealing: 800°C, 30 min)

Fig. 6. Charge-to-breakdown Q_{bd} of GaN MOS capacitors with and without annealing after MW-PECVD SiO₂ deposition calculated from the *C-V* characteristics at 150°C. (Annealing: 800°C, 30 min)

Fig. 7. Transfer characteristics of AlGaN/GaN Hybrid MOS-HFETs with MW-PECVD SiO₂ and CCP-CVD SiO₂. SiO₂ films were annealed at 800°C for 30 min after deposition.

Fig. 8. Field-effect mobility versus channel length of Al-GaN/GaN Hybrid MOS-HFETs with MW-PECVD SiO₂ and CCP-CVD SiO₂. SiO₂ films were annealed at 800°C for 30 min after deposition.