Germanium/Ni-InGaAs Solid-State Reaction for Contact Resistance Reduction on n⁺ In_{0.53}Ga_{0.47}As

Hua-Xin Guo, Eugene Yu Jin Kong, Xingui Zhang, and Yee-Chia Yeo.*

Dept. of Electrical & Computer Engineering, National University of Singapore, 117576 Singapore. *Phone: +65-6516-2298, Fax: +65-6779-1103, Email: yeo@ieee.org

ABSTRACT

We report the first demonstration of solid state reaction between Ge and Ni-InGaAs to form mono nickel germanide contact on n^+ In_{0.53}Ga_{0.47}As. This reaction was performed by isochronous annealing of Ge on Ni-InGaAs at temperatures ranging from 400 to 600 °C in N₂ ambient. Detailed materials study on the reaction mechanism is described here. Compared with Ni-InGaAs contact, more than 60% reduction in contact resistance on n-In_{0.53}Ga_{0.47}As was achieved using this new contact formation scheme.

INTRODUCTION

High mobility III-V compound semiconductors are attractive candidates to replace strained Si channel for future high performance logic applications [1]-[4]. To realize the full potential of III-V MOSFETs, S/D engineering to achieve low series resistance R_{SD} is required. A self-aligned metallization analogous to the salicide process in Si CMOS technology is desired for deeply scaled III-V MOSFETs. In this regard, Ni-InGaAs compound has been reported as a promising self-aligned contact for InGaAs MOSFETs [5]-[7]. However, these contacts suffer from high contact resistance R_C which severely degrades device performance at small gate length. Therefore, R_C needs to be reduced.

In this paper, we report the demonstration of significant R_C reduction for Ni-InGaAs contact through the solid state reaction of Ge and Ni-InGaAs. This was achieved by annealing the material stacks and mono nickel germanide is formed on a layer of solid phase regrown InGaAs.

DEVICE DESIGN AND FABRICATION

2" p-type InP wafers were used as starting substrates, on which a 1 μ m p-type In_{0.53}Ga_{0.45}As (Be-doped, doping concentration N_A of 2×10^{16} cm⁻³) was grown. Si⁺ ion implant (1×10^{14} cm⁻² at 25 keV and 1×10^{14} cm⁻² at 70 keV) and mesa etching was done to form n⁺ InGaAs well for forming transfer length method (TLM) test structures. Active contact regions were opened by Photoresist (PR) patterning. Ni (~30nm) was deposited and lift-off was done to form contact pads. The 1st Rapid Thermal Anneal (RTA) at 250 °C for 30 s forms Ni-InGaAs contact on the n-InGaAs well. The complete process flow for TLM device fabrication is illustrated in Fig. 1(a). The key steps to form NiGe contact is illustrated in Fig. 1(b) where Ge (~70 nm) was evaporated on the Ni-InGaAs pad by lift-off after a 1 min DHF (HF:H2O=1:100) clean. The process was completed by the 2nd annealing at various temperatures for 10s.

Blanket samples were also prepared for the study of the solid state reaction between Ge and Ni-InGaAs at temperatures ranging from 300 $^{\circ}$ C to 600 $^{\circ}$ C.

RESULTS AND DISCUSSION

The Secondary Ion Mass Spectroscopy (SIMS) analysis in Fig. 2 shows the elemental distributions of Ni and Ge for as-deposited sample and annealed samples. Similar to as-deposited sample, there is little reaction between Ge and Ni-InGaAs at 300 °C as seen from the sharp interface between Ge and Ni signal. However, after 400 °C anneal, Ge intermixes with Ni to form a layer of NiGe compound.

Therefore, we further studied samples annealed above 300 °C in TLM samples. Fig. 3 shows the sheet resistance measured by

micro-four-point-probe. The sheet resistance of formed metal layer reduces dramatically after thermal annealing compared with Ni-InGaAs. TLM test structures were used to evaluate the contact resistance. Fig. 4(a) plots the total resistance versus contact spacing between two adjacent pads. R_C for each split is statistically summarized by the box chart in Fig. 5. The control is Ni-InGaAs samples without Ge deposition. On the average, R_C is reduced by 64% for samples annealed at 600 °C for 10 s.

Fig. 6 shows the SIMS signals for samples annealed at 400 °C. From the Ge and Ni distributions, it is clear that the top layer consists of a nickel-germanium compound and the sublayer is unconsumed Ni-InGaAs alloy. This was also confirmed by the cross-sectional TEM images of the formed layer in Fig. 7. Fig. 7(b) is the magnified view of the contact materials with Energy-Dispersive X-Ray Spectroscopy (EDX) results labeled, showing two metal layers: a top NiGe layer (~66 nm) over a Ni-InGaAs layer (~27 nm). ~24 nm InGaAs regrew at this anneal temperature. It is calculated that the Ge/Ni-InGaAs reaction ratio is around 1.94~2.36. Fig. 8 shows that at 600 °C, Ge fully consumes the Ni-InGaAs to form only NiGe on top. TEM images of this condition in Fig. 9 show that the NiGe (~57 nm) layer and the solid phase regrown InGaAs (~49 nm) below the contact material. The NiGe film is continuous and smooth though interface over growth of NiGe was observed at a few spots.

Phase identification was carried out using X-Ray diffraction (XRD) in θ -2 θ geometry. The XRD spectra in Fig. 10 for annealed samples shows that, for annealing temperatures above 400 °C, mono nickel germanide is the dominant phase formed.

The surface morphology was characterized by Scanning Electron Microscope (SEM) (Fig. 11). Relatively smooth surface was observed for 400 °C and 600 °C, while the 500 °C sample has a rougher surface. Table I is a summary of the two contact schemes. The novel contact scheme in this work shows superior properties to that of Ni-InGaAs. Future work is needed to integrate this contact technology into InGaAs nMOSFETs in a self-aligned manner.

CONCLUSION

Solid state reaction between Ge and Ni-InGaAs was demonstrated for the first time on $In_{0.53}Ga_{0.47}As$ substrate. Electrical data from TLM structures shows significant R_C reduction. The reaction starts at temperatures above 300 °C. The contact material formed is found to be mono nickel germanide. Solid phase regrowth of InGaAs was also observed during the reaction. This novel contact formation scheme could be a promising self-aligned contact for InGaAs nMOSFETs.

ACKNOWLEDGEMENT. Support from H.-Y. Lin, C.-H. Ko and C. Wann of TSMC is acknowledged.

REFERENCES

- [1] M. Radosavljevic et al., IEDM Tech. Dig, pp. 126, 2010.
- [2] R. J. W. Hill et al., IEDM Tech. Dig, pp. 130, 2010.
- [3] A. Ali. et al., IEDM Tech. Dig, pp. 134, 2010.
- [4] A. Nainani et al., IEDM Tech.. Dig., pp. 138, 2010.
- [5] X. Zhang et al., ESL, vol. 14, no. 2, pp. H60, 2011.
- [6] S. H. Kim et al., IEDM Tech. Dig., pp. 596, 2010.
- [7] X. Zhang et al., ESL, vol. 14, no. 5, pp. H212, 2011.

Fig. 10. XRD spectra for annealed samples. It is found that mono nickel-germanide is the dominant phase for anneal temperatures of 400 °C or higher.

Fig. 11. SEM images of the surface morphology for control and annealed samples. Surface roughness is observed for (c).

	Ni-InGaAs	NiGe
Self-Aligned Design	✓	✓
Process	Simple	Simple
Contact Resistance $(k\Omega \cdot \mu m)$	1.68	0.59
Contact Resistivity $(\Omega \cdot cm^2)$	6.32×10 ^{-4*}	8.52×10 ^{-5*}
Contact Sheet Resistance	Medium	Small
Thermal Stability	Poor**	Good**
In _{0.53} Ga _{0.47} As Consumption Rate	1.7-2	Very little***

*Assuming the sheet resistance to be identical under the contacts and between contacts;

**NiGe forms stably at anneal temperatures above 400 °C;

***NiGe mainly formed above the original InGaAs surface during solid phase regrowth of InGaAs.