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Abstract 

We have found and verified that the standard deviation 
of current mismatch σ(∆I/I) can be precisely expressed 
based on trans-conductance efficiency gm/I when MOSFET 
doesn’t have the subthreshold hump. Especially, it is veri-
fied for the first time that temperature dependence of 
σ(∆I/I) in all inversion can be predicted within +/-10% ac-
curacy with our model. As a result, influence of the sub-
threshold hump on MOSFET current mismatch is clarified. 
1. Introduction 

Importance of MOSFET current mismatch prediction 
increases with decrease in desired power-consumption level 
[1]. To design an analog circuit with small area and low 
power for portable or bio-signal sensing applications [2], 
precise σ(∆I/I) prediction in weak inversion is indispensa-
ble. There are some models that try to predict σ(∆I/I) curve 
[3][4]. However, they need to adjust the fitting parameters 
depending on channel size, and the accuracy in weak inver-
sion is not in an allowable level. As a reason for the low 
prediction accuracy in weak inversion, an influence of the 
subthreshold hump is supposed [4][5]. In nanoscale MOS-
FET with STI, avoiding an influence of the subthreshold 
hump becomes more difficult [6].  

A temperature dependence of current mismatch is also 
discussed in some papers [7][8], but a reproducibility of 
σ(∆I/I) curve in all inversion is not available. 
2. Influence of subthreshold hump on current mismatch 
   By displaying Vg-Id curves of some pair-transistors at 
the same time, a hump can be identified as shown in Fig. 1. 
A hump in the subthreshold region appears when channel 
has plural different barrier heights to carrier excitation from 
source to channel. To obtain the hump depicted in Fig. 1-1, 
STI formation condition is experimentally changed. 

An existence of a hump can be detected in high sensi-
tivity by evaluating σ(∆I/gm)=σ(∆I/I)/(gm/I) curve, as de-
picted in Fig. 2. When a hump exists, σ(∆I/gm) in weak 
inversion increases with decrease in channel current. The 
similar increasing behavior of σ(∆I/gm) in weak inversion 
were reported [3][9]. But, its mechanism has not been clari-
fied. On the other hand, when a hump doesn’t exist, 
σ(∆I/gm) decreases with decrease in channel current. From 
Fig. 2, it is clear that the increasing behavior of σ(∆I/gm) in 
weak inversion are caused by the subthreshold hump. 

Also in channel size dependence of σ(∆I/I) curve, an 
influence of a hump can be clearly seen as depicted in Fig. 
3. When a hump exists, σ(∆I/I)×√(LeffWeff) in weak inver-
sion depends on its channel size. On the other hand, when a 
hump doesn’t exist, σ(∆I/I)×√(LeffWeff) of various channel 
sizes are merged into one curve. As shown in Fig. 3-2, the 
behavior of σ(∆I/I)×√(LeffWeff) curve is similar with that of 
gm/I curve. The gm/I universality is well known as the key 
parameter for analog circuit design [10]. 

3. Accurate prediction model of current mismatch 
The similar behavior between σ(∆I/I) and gm/I is due 

that σ(∆I/I) can be precisely expressed from gm/I. Mathe-
matical scheme is shown in Table I. In eq. (1), a reciprocal 
of gm/I is expressed as a sum of reciprocals of each asymp-
tote in weak and strong inversions. This is similar to Matti-
essen’s rule concerning the mobility. The maximum value 
‘c’ in weak inversion equals q/nkBT. By considering the 
difference of eq. (1) between adjacent MOSFET channels, 
eq. (2) can be obtained. We have confirmed that σ(∆I/I) can 
be expressed as κ×σ(∆I/I-∆gm/gm). In addition, κ is slightly 
lower than 1 and hardly depends on channel current. Thus, 
we assumed κ=1. Finally, as shown in eq. (4) and eq. (5), 
σ(∆I/I)×√(LeffWeff) can be obtained by η×gm/I. 

When a hump doesn’t exist, we have found that 
η=σ(∆I/gm)×√(LeffWeff) in weak inversion converges on a 
specific value of As which doesn’t depend on channel size 
and temperature, as shown in Fig. 4. From eq. (5), As can 
be analytically expressed as σ(∆c/c)/c. Here c equals 
q/nkBT. Namely, As is determined by the substrate factor ‘n’. 
The value of ‘n’ depends on local channel characteristics 
[11]. This means that As is determined by channel factor. 

An accuracy of our prediction model is verified. It is 
indicated in Fig. 5 that σ(∆I/I)×√(LeffWeff) curve at each 
temperature can be accurately predicted in all inversion by 
our model. It is shown in Fig. 6 that differences between 
the measured data and our model are within +/-10%. Pa-
rameters are extracted from each merged curve in Fig.3-2. 
We have confirmed that temperature dependent parameters 
are distributed in the straight line on the Arrhenius plot. 

The specific value As can become another candidate for 
the current fluctuation indicator like Pelgrom and Takeuchi 
Vth-fluctuation indexes [12][13]. Unlike the Pelgrom index, 
a prediction of σ(∆I/I) temperature dependence is also pos-
sible by using a constant As for a channel. It is shown in Fig. 
5 that the measurement data can be predicted with an al-
lowable accuracy by As×gm/I(T,L,W). gm/I(T,L,W) indicates 
gm/I which is measured at each temperature and each chan-
nel size. This means that As becomes a current fluctuation 
indicator as long as the merged σ(∆I/I)×√(LeffWeff) curve 
depicted in Fig. 3-2 can be obtained in relatively wide 
channel transistors. 
4. Conclusion 
   It has been revealed that σ(∆I/I) behavior can be pre-
cisely derived and verified based on the gm/I universality, as 
long as MOSFET doesn’t have the subthrehold hump. An 
influence of the subthreshold hump should be avoided in 
order to predict MOSFET current mismatch accurately. For 
the first time, we have succeeded in a prediction of σ(∆I/I) 
temperature dependence in all inversion with our model. 
This model is very profitable to an area reduction design of 
a low-power consumption analog circuit. 
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Fig.1 Measurement results of NMOS Vg-Id curves of 32 pair-transistors ac-
cording to a presence of the subthreshold hump. In Fig.1-1, an existence of the 
subthreshold hump can be identified in the region enclosed with the circle. 
Also in Fig.1-1, it is hard to recognize a hump only in an individual curve. On 
the other hand, in Fig. 1-2, the subthreshold hump cannot be identified. 

wi hump w/o hump 

Fig.2 Measurement results of σ(∆I/gm). 
Each curve of circle and triangle symbols 
is calculated from Vg-Id data of each 
pair shown in Fig.1. When a hump ex-
ists, σ(∆I/gm) in weak inversion in-
creases with decrease in channel current. 

Fig.3-1 Fig.3-2 wi hump w/o hump 

Fig.3 Channel size dependence of gm/I and σ(∆I/I)×√(LeffWeff) according to a pres-
ence of the subthreshold hump. As shown in Fig. 3-2, the merged curve of gm/I has 
an asymptote of (gm/I)W.I.=c (const.) in weak inversion, and has an asymptote of 
(gm/I)S.I.=[(I×L eff)/(I0×Weff)]

-γ in strong inversion, respectively. When MOSFET 
doesn’t have a hump, behavior of σ(∆I/I)×√(LeffWeff) curve is similar to that of the 
universal gm/I curve. Gate oxide thickness measured in each figure is different. 

Fig.4 Measurement results of σ(∆I/gm). 
σ(∆I/gm) curves are obtained by using gm/I 
and σ(∆I/I) which are depicted in Fig. 3-2. 
In addition, temperature dependence is also 
depicted. 

Fig.5 Comparison of σ(∆I/I)×√(LeffWeff) 
between the measurements and two predic-
tion methods. One is the model calculation 
shown in Table I. (solid lines) Another is 
calculated by As×gm/I(T,L,W).(dotted lines) 

Table I  Mathematical scheme. 

Fig.6 Relative difference between the 
measurements and the model calcula-
tions at -40, 25, and 125 deg-C.  
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, where I0=2nµCox (kBT/q)2. (moderate inversion center) 
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