A Consistent Modeling Framework to Explain Negative Bias Temperature Instability (NBTI) DC Stress, Recovery and AC Experiments

S. Mahapatra¹, A. E. Islam², S. Deora¹, V. D. Maheta¹ and M. A. Alam¹
¹Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
²School of Electrical Engineering and Computer Science, Purdue University, W. Lafayette, IN 47904, USA

Introduction: NBTI is a crucial reliability issue for SiON and high-k p-MOSFETs having implications for digital and analog CMOS circuits and has attracted huge attention. Past studies have shown the following key features of NBTI: (i) it recovers after the removal of stress [1] and calls for fast or ultra-fast measurements [1-3], (ii) it shows strong gate oxide process dependence [4,5], (iii) optimized, production quality bias is well above V_T, (iv) it recovers after the removal of stress [1] and calls for fast or ultra-fast measurements [1-3], (ii) it shows strong gate oxide process dependence [4,5], (iii) optimized, production quality bias is well above V_T, (iv) recovery data measured following stress show log-like time dependence [9], and (v) AC data versus frequency and duty cycle from different groups also show universal behavior when properly normalized [10]. In this paper, a Reaction-Diffusion (RD) model [11-13] based framework is used to explain all the key features of NBTI as listed above.

Stress data analysis: Gate oxide process impacts measured NBTI V_T shift (Fig.1a), pre-existing bulk traps (Fig.1b) and stress induced trap generation (Fig.1c). As modeled in detail in [10], NBTI is due to uncorrelated contributions from fast hole trapping in pre-existing, process related bulk oxide traps (ΔN_h), together with generation of interface (ΔN_IT) and bulk (ΔN_OT) oxide traps (Fig.2), where a non-dispersive H/H_2 R-D framework [13] has been used to model ΔN_h. The underlying ΔN_IT, ΔN_h and ΔN_OT components of overall NBTI show consistent temperature (T) activation and oxide field (E_OX) dependence for devices having different gate oxide processes (Figs.3,4) [10]. Strong process dependence of NBTI can be mostly attributed to differences in hole trapping in pre-existing bulk traps (Figs.2-4), which can be reduced by process optimization. Contributions from ΔN_h and ΔN_OT become lower in properly optimized FETs close to operating bias, and long time degradation becomes ΔN_IT dominated (Fig.5a) [10]. Predicted degradation has same power law time dependence as measured over long stress time from various groups (Fig.5b) [6-8]. This universal power law feature of long-time NBTI can only be predicted by R-D model as discussed in detail in [10].

Recovery data analysis: There has been much concern that R-D model cannot explain NBTI recovery transients [9], as it fails to predict the following features: (i) start of recovery, (ii) rate of recovery, and (iii) bias dependence. As discussed in [10], bias dependence of recovery (as long as recovery bias is well above V_T and interface traps don’t capture electrons) is a measurement artifact related to not taking into account the role of mobility degradation. As NBTI stress results in ΔN_h, ΔN_OT and ΔN_IT, it is inappropriate and naive to attempt prediction of measured recovery data only by R-D solution of ΔN_IT, as done in [9]. Once the early part of measured recovery is identified to hole detrapping from pre-existing and generated defects, the start time of recovery as governed by ΔN_IT recovery can be accurately predicted by R-D model solution. Finally, the difference in measured and predicted rate of ΔN_IT recovery by R-D model is identified due to difficulty associated with formulating a 3D diffusion problem in a 1D framework and can be taken into account by adopting multiple back-diffusion pathways. Once ΔN_IT, ΔN_h and ΔN_OT components are isolated by analyzing stress data, NBTI recovery data from differently processed devices and measured under different conditions can be accurately predicted using hole detrapping and R-D model as shown (Fig.6) [10]. Therefore, contrary to recent perception, NBTI recovery can be accurately predicted by R-D framework.

AC data analysis: NBTI recovery after removal of stress also makes AC degradation lower than that of DC and therefore holds promise for extra reliability margin. AC data obtained from different sources versus frequency and duty cycle show a wide spread when normalized to DC data per usual practice (Fig.7a) [14-20]. This has been identified due to differences in hole trapping contribution that affects DC stress. Interestingly, when renormalized using AC stress data at 50% duty, unique universality is observed (Fig.7b) [10]. Once again, R-D model solution can explain frequency independence and duty cycle dependence (up to ~ 85% duty, beyond which scatter due to hole trapping dominates). This is another proof that R-D model can accurately predict NBTI recovery.

Conclusions and Outlook: The DC stress, recovery and AC frequency and duty cycle dependence of NBTI degradation in p-MOSFETs show universal features and is explained using a R-D model for interface traps together with hole trapping in pre-existing and stress generated traps. Pre-existing bulk traps can be minimized by suitable process optimization, and generation of bulk traps are reduced close to operating voltage. Therefore for well optimized devices at use condition, NBTI is dominated by generation of interface traps, and R-D model solution can be used to extrapolate measured data to end-of-life for lifetime estimation under both DC and AC conditions.

Fig 1. (a) NBTI time evolution measured using ultra-fast method, (b) estimation of pre-stress existing traps from flicker noise measurement, and (c) trap generation due to stress measured using charge pumping and DCIV for optimized (Type-A) and un-optimized (Type-B) devices.

Fig 2. Estimation of overall NBTI using ΔN_{ex}, ΔN_{ot} and ΔN_{ot} components.

Fig 3. Extracted NBTI components for different devices for different T.

Fig 4. Extracted NBTI components for different devices for different E_{OX}.

Fig 5. (a) Prediction of long time NBTI and extrapolation to use condition, (b) very long time degradation and (c) very long time extrapolation to use condition, (b) very long time degradation (V), Type-A.

Fig 6. Prediction of measured recovery using hole detrapping and R-D model for different type-A devices [10].

Fig 7. AC duty cycle and frequency dependence data normalized to DC (top) and renormalized to 50% AC (bottom). RD solutions are shown by red line.