# 1.2 nm-EOT Al<sub>2</sub>O<sub>3</sub>/Ge Gate Stack with GeO<sub>X</sub>-free Interface

T. Tabata<sup>1,2</sup>, C. H. Lee<sup>1,2</sup>, T. Nishimura<sup>1,2</sup>, S. K. Wang<sup>1,2</sup>, K. Kita<sup>1,2</sup> and A. Toriumi<sup>1,2</sup>

<sup>1</sup>Department of Materials Engineering, The University of Tokyo, <sup>2</sup> JST-CREST 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan

Phone and Fax: +81-3-5841-7161, E-mail: tabata@adam.t.u-tokyo.ac.jp

### 1. Introduction

Ge is one of the promising semiconductor materials for the post Si-CMOS. In fact, very high electron mobility (peak  $\mu_{eff}$ =1,920 cm<sup>2</sup>/Vs) was accomplished in n-MOSFET with  $Y_2O_3$  gate stack [1]. It is almost 2.5x larger than the Si-universal mobility. The EOT scaling is, however, still challenging, because the above MOSFET actually has a relatively thick GeO<sub>2</sub> interface layer (IL) due to employing high pressure oxygen annealing (HPOA). On the other hand, relatively low processing temperatures have been used in device fabrication to suppress GeO desorption, but high temperature process (~600°C) will be desirable when device stability and reliability are considered. Above requirements suggest us to use Al<sub>2</sub>O<sub>3</sub> for gate dielectric film on Ge, because among various high-k oxides, Al<sub>2</sub>O<sub>3</sub> has high resistances against oxygen diffusion and thermal reaction [2]. Furthermore, when the scalability is concerned, the direct  $Al_2O_3$  on Ge might be desired than  $GeO_X$ -IL insertion [3].

So, this paper discusses  $Al_2O_3$  potentiality in Ge gate stack with  $GeO_x$ -free interface even after relatively high temperature process (600°C), and then demonstrate thin EOT  $Al_2O_3$ /Ge MIS capacitor (MISCAP) characteristics with  $GeO_x$ -free interface.

## 2. Experimental

 $Al_2O_3$  film was deposited on p-type Ge (100) wafer by rf-sputtering in Ar.  $Al_2O_3$  film thickness was determined by the X-ray reflectivity measurement. After the deposition, the post deposition annealing (PDA) was performed at 600°C for 30 sec in 1-atm O<sub>2</sub>, and at 600°C and 550°C for 30 sec in 10-atm O<sub>2</sub> (at room temperature), as shown in **Fig. 1**. Then, Au and Al were evaporated as the gate electrode and the back ohmic contact, respectively.

### 3. Results and Discussion

The oxygen blocking capability of thin  $Al_2O_3$  film is discussed. **Fig. 2 (a)** and **(b)** show the Ge3d core level spectra in XPS. Almost no GeO<sub>x</sub> growth was detected at the interface of as–sputtered  $Al_2O_3$  on Ge. This means that Ge was not oxidized in the sputtering process, while it was grown in O<sub>2</sub>-PDA at 600°C through ultra-thin  $Al_2O_3$ . We have noted, however, that the peak intensity of Ge<sup>4+</sup> dramatically decreased with the increase of  $Al_2O_3$  thickness. This indicates that only 2~3 nm- $Al_2O_3$  is thick enough to suppress the oxidation of Ge even at 600°C.

In Ge MIS gate stacks, GeO desorption should degrade the Ge interface quality and increase the  $D_{it}$ . [4]. **Fig. 3** shows the TDS (thermal desorption spectroscopy) results of GeO desorption for (i) Al<sub>2</sub>O<sub>3</sub>/Ge, (ii) Al<sub>2</sub>O<sub>3</sub>/GeO<sub>2</sub>/Ge, and (iii) GeO<sub>2</sub>/Ge stacks, respectively. From the comparison between (i) and (ii), it is revealed that there is no GeO desorption without GeO<sub>2</sub>-IL at the interface.

Furthermore, from comparison between (ii) and (iii), we can understand that  $Al_2O_3$  works as a diffusion barrier than thick GeO<sub>2</sub> layer, because almost no GeO desorption was observed even at 600°C in the case of (ii).

The oxygen blocking effect of thin  $Al_2O_3$  film was also observed in HPOA. **Fig. 4** shows the Ge3d core level spectra of 3-nm-thick- $Al_2O_3$ /Ge with HPOA at 600°C and 550°C. As-deposited sample is also shown. It is noted that GeO<sub>x</sub>-IL growth is entirely suppressed at 600°C even in HPO. We reported that a relatively thick GeO<sub>2</sub>-IL growth was observed in the cases of rare-oxides though C-V characteristics were surprisingly good [5]. It is in striking contrast to the present results. This fact is a great advantage of  $Al_2O_3$  gate stack for suppressing the interface degradation due to GeO desorption and for reducing the CET in terms of the scalability.

Next, electrical properties are discussed. The question is whether GeO<sub>x</sub>-free interface is really improved by HPOA or not. C-V characteristics of 3-nm-thick-Al<sub>2</sub>O<sub>3</sub>/Ge MISCAPs with N<sub>2</sub>-PDA (1-atm), O<sub>2</sub>-PDA (1-atm), and HPOA (10-atm) at 600°C, are shown in Fig. 5, respectively. The oxygen rich PDA clearly improves the interface in spite of GeO<sub>X</sub>-IL formation. Fig. 6 (a) shows bi-directional C-V characteristics of 3-nm-thick-Al<sub>2</sub>O<sub>3</sub>/Ge MISCAP in HPOA at 600°C as a parameter of measurement frequency. A small frequency dispersion at depletion region indicates that the interface was considerably improved by HPOA. Although the interface has not been clarified yet, the results are significantly different from those in HfO<sub>2</sub> gate stacks [6]. We infer that the interface might be stabilized due to the different valency between Ge and Al, which was also discussed in Y<sub>2</sub>O<sub>3</sub>/Ge gate stack [7], as well as the possible interface Al-Ge bonds might be recovered to Al-O-Ge one.

The accumulation capacitance is 2.1  $\mu$ F/cm<sup>2</sup> (EOT~1.2 nm). Since the relative dielectric constant, *k*, of the present Al<sub>2</sub>O<sub>3</sub> was ~7.5, and Al<sub>2</sub>O<sub>3</sub> has a large band offset against Ge thanks to no d-electron, quite a low gate leakage is expected. **Fig. 6 (b)** shows I-V characteristic with a low leakage current density (4.0×10<sup>-6</sup> A/cm<sup>2</sup>) at V<sub>GS</sub>=V<sub>FB</sub>-1 (V).

### 4. Conclusions

We have studied  $Al_2O_3$  gate stack on Ge together with HPOA.  $Al_2O_3$  shows the high resistance against  $O_2$ diffusion, and no interfacial GeO<sub>x</sub> layer was formed even in HPOA. However, it was found that HPOA improved the interface very much. Further optimization is obviously needed, but we think that  $Al_2O_3$  gate stack will provide a potential for Ge device expansion.

### Acknowledgements

One of the authors (T. T) was grateful for the support by JSPS Research Fellowships for Young Scientists.

#### References

- [1] C. H. Lee et al., Tech. Dig. IEDM, p.416 (2010).
- [2] Y. Oishi and W. D. Kingery, J. Chem. Phys. 33, 480 (1960).
- [3] R. Zhang et al., APL 98, 112902 (2011).
- [4] C. H. Lee et al., APEX 2, 071404 (2009).
- [5] T. Tabata et al., ECS-Trans. 16 (5), 479 (2008).
- [6] K. Kita et al., Ext. Abst. SSDM, p.292 (2003).
- [7] T. Nishimura et al., APEX 4, 064201 (2011).



Fig. 1. Schematic views of sample preparation. Intentional IL was not formed before  $Al_2O_3$  deposition. HPOA was performed in a closed furnace with 10-atm  $O_2$  at room temperature in this experiment.



**Fig. 2.** The Ge3d core level spectrums of (a) as-sputtered and (b) 1-atm  $O_2$ -PDA at 600°C samples of thin  $Al_2O_3$ /Ge stacks. Only a very small amount of GeO<sub>X</sub> layers are detected for samples with  $Al_2O_3$  thicker than 2.5 nm.



**Fig. 3.** TDS spectrums of GeO (m/Z=90) desorption from  $Al_2O_3/Ge$ ,  $Al_2O_3/GeO_2/Ge$ , and  $GeO_2/Ge$  stacks. The heating rate of the measurement was 20°C/min. Note that a significant difference of the desorption temperature between w/ and w/o  $Al_2O_3$  cap on  $GeO_2/Ge$ . The Q-Mass current intensity difference comes from the sample size difference.



**Fig. 4.** The Ge3d core level spectrums of as-sputtered and HPOA samples of 3-nm-thick-Al<sub>2</sub>O<sub>3</sub>/Ge stacks. HPOA was applied at  $600^{\circ}$ C in 10-atm O<sub>2</sub> (at room temperature).



Fig. 5. The 1MHz C-V characteristics of 3-nm-thick- $Al_2O_3/p$ -Ge MISCAPs with N<sub>2</sub>-PDA (1-atm), O<sub>2</sub>-PDA (1-atm), and HPOA (10-atm) at 600°C.



**Fig. 6.** (a) The frequency dispersion of C-V characteristics of 3-nm-thick- $Al_2O_3/p$ -Ge MISCAP with 10-atm HPOA. EOT~1.2 nm was obtained from the accumulation capacitance. The k-value of  $Al_2O_3$  was ~7.5. (b) I-V characteristics of 3-nm-thick- $Al_2O_3/p$ -Ge MISCAP with 10-atm HPOA.