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1. Introduction

Introducing additive (La, Mg, Al) in the gate staiska
well accepted solution to obtain low Vt on transistof 32
nm node CMOS technologies and beyond [1-2-3]. @entr
versial results have been published relatively lecteo-
static effects as well as quality, reliability aperformance
of such layers. Using data from a wide panel ofeeixp
ments (Fig.1 and Fig.2) and focusing on the anslgbihe
interfacial quality and reliability, this paper Wiprecise
benefits and trade-offs obtained through these tspa

2. Main results

Nitrogen (N). Shifts of threshold voltages are believed
to be due to interfacial dipoles or charges at igh-k
(HK) / interfacial layer (IL) interface induced Hjffusion
of dopants throughout the stacks [4-5]. These siiffus
towards the SION/Si interface are believed to erelsfects
affecting the performance and reliability of thartsistors.
As N may be inserted in all the key stack sub-layéor
example TiN, HfSION, SiON, it is of crucial importee to
quantify its impact. In particular, the impact oraith cur-
rent can be evidenced by investigating the NBTI el
inversion mobility (Fig.3). Both pMOS NBTI shift dn
nMOS mobility values are correlated [6] and dependN
concentration and distribution within the intertciayer.
The presence of N at the interface is also coedlab a
higher density of interface defects (Nit), with pesific
energy distribution. A characteristic peak appedose to
the conduction band (Ec), which magnitude is propoal
to the amount of diffused N (Fig.4).

Lanthanum & Magnesium for nMOS. The introduction
of La could also create extra Nit when La reactnes Si
interface. These Nit also show a specific eledts@nature
with a hump near mid gap (Fig.5), very similar e tvell
known Pb-centers signature [7]. These additiondéale
further degrade the mobility. On the contrary, ojitied La
content does not show any Dit increase while aifsogmt
Vfb shift (~0.5 V) and no (weak) mobility degradatican
be obtained (Fig.6) [8]. In this case, PBTI is atw de-
graded compared to La free stacks of good quddity. 7).

Mg presents electrical properties close to La, whith
ability to shift Vt towards N+ gate [3]. As for Lahe ef-
fects of Mg on performance and reliability may bedsed
through the characterization of the Si/oxide irgeef. For
Mg a very specific Dit signature is observed, watlstrong
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hump near Ev and a medium one near Ec (Fig.8).
Aluminum for pMOS. Al doping can induce significant
WF shifts towards P+: over 0.5V shift is for >3nm $iO
layer covered with AD; (Fig.9). However in all cases a
Roll-off effect strongly reduces the gain due toaAllower
EOT(~1nm) [9]. Thinnest EOT are obtained by intrcidg
Al from metal electrode but W P+ shift due to dipole is
modulated due to reduced WF of Al-doped metal (.
Comparing TaAIN stacks of Fig.2 we observe a high
typical N signature in the gap (Fig.11), enhancéith &l
close to SiQ, while no extra hump due to Al is observed.
The cause of this enhanced N signature (confirmed b
NBTI Fig.12) remains to understand. Depending mtess
conditions, Al containing stacks may present brgada-
tions of degradation level (Fig.12). However op#ed
conditions (thin TiN, low [Al],...) can lead to sidigant Vt
modulation, good reliability (Fig.13), low interfacstates
density and good mobility. Notice than hole mobilis
shown to be less affected than electron mobilispeeially
for short gate length [10]. Moreover Fig.14 shoves f
TaAIN that for small gate length the discrepancibserved
for long channel vanish (edge defects are mor&arithan
Al induced defects). Good mobility values as highl®0
cn/Vs may be obtained down to Lg=30nm. Finally defect
generated by Al are also shown to be low enougdlltov
excellent Vt mismatch ($y<1.5mV.um) Fig.15.

3. Conclusions

Low Vit control can be efficiently achieved by dofman
insertion in the gate stack. However dopants amamiat
diffusion must be carefully controlled to avoid dieental
effects on drive currents and reliability. In deptalysis of
Si/SION interface can help for a good process dpétion.
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high-k electric field. TIAIN

shows smaller barrier (more

N+ behaviour) than TiN.
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