Role of Al atoms in (TaC)_{1-x}Al_x gate electrode on V_{fb} for HfO₂ gate stack

M. Kimura¹, T. Nabatame², H. Yamada¹, A. Ohi², T. Chikyow² and T. Ohishi¹

¹Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan Phone: +81-29-860-4915 E-mail: KIMURA.Masayuki@nims.go.jp ²MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science, 1, 1 Nemiti, Tauluha, 205, 0044, Japan

National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

1. Introduction

TiAlN and TaAlN gate electrodes have been investigated to control flatband voltage (V_{fb}) because of high work function (ϕ_m) and dipole due to AlO_x layer formation at high-k/SiO₂ interface for Hf-based high-k pMOSFET [1, 2]. On the other hand, nitrogen-free TaC has emerged as a promising gate electrode because of high mobility and thermal stability [3-5]. However, effect of Al atoms in Al-incorporated TaC ((TaC)_{1-x}Al_x) gate electrodes on V_{fb} has not been understand yet.

In this paper, role of Al atoms in $(TaC)_{1-x}Al_x$ -gated MOS capacitors with HfO₂ dielectric on V_{fb} shift has been systematically studied with annealing temperature.

2. Experimental procedure

Multiple $(TaC)_{1-x}Al_x$ -gated MOS capacitors were prepared as follows: A 4.2-nm-thick HfO₂ film was fabricated on SiO₂ (3 nm)/p-Si by MOCVD process. Typically, several 150-nm-thick $(TaC)_{1-x}Al_x$ films of various compositions (x = 0 - 0.33) were deposited on the HfO₂ film by sputtering method using TaC and Al metal targets. The post metal gate electrode deposition annealing (PMA) was varied from 500 to 1000 °C in N₂ after FGA at 400 °C in 3% H₂. To discuss bottom interface dipole, ALD-Al₂O₃ (3.4 nm) MOS capacitors with TaC and $(TaC)_{0.9}Al_{0.1}$ gate electrodes were also prepared. The V_{fb} value was estimated from the C-V characteristics using the program MIRAI-ACCEPT [6].

3. Results and Discussion

3.1 A negative V_{fb} shift in the low temperature region

We first examined the structural properties in $(TaC)_{1-x}Al_x$ films. **Fig. 1** shows the typical XRD patterns of $(TaC)_{1-x}Al_x$ films after FGA. The face center cubic (FCC) structure of TaC was defected and the lattice constant shows almost same value in all compositions. The resistivity with Al content in $(TaC)_{1-x}Al_x$ films after annealing at 500 - 1000 °C are shown in **Fig. 2**. Note that the resistivity of $(TaC)_{1-x}Al_x$ films is almost unchanged in all ranges regardless of annealing temperature.

Relationship between $V_{\rm fb}$ and Al content of the $(TaC)_{1-x}Al_x$ -gated MOS capacitors with HfO₂ dielectric after FGA and PMA at 500 - 700 °C are shown in **Fig. 3**. The C-V curves shift to a more negative value as the Al content in the $(TaC)_{1-x}Al_x$ gate electrodes increases after FGA, as shown in an inset graph. A negative $V_{\rm fb}$ shift occurs in all temperature ranges. This suggests that the ϕ_m of $(TaC)_{1-x}Al_x$ gate electrode changes lower by introducing Al atoms with a low ϕ_m (4.06 - 4.28 eV).

3.2 A positive V_{fb} shift in the high temperature region

Next annealing temperature dependence of V_{fb} was

evaluated. The C-V characteristics of TaC and $(TaC)_{0.9}Al_{0.1}$ -gated HfO₂ MOS capacitors after PMA at 500 - 1000 °C are shown in **Fig. 4(a)** and **(b)**, respectively. The C-V characteristics of $(TaC)_{0.9}Al_{0.1}$ -gated MOS capacitors significantly shift in the positive direction at above 800 °C, while the TaC-gated MOS capacitors show almost same profiles. The V_{fb} behaviors of $(TaC)_{1-x}Al_x$ -gated MOS capacitors are summarized in **Fig. 5**. We found that the direction of V_{fb} shift changes according to annealing temperature. Note that the negative and positive V_{fb} shifts as a function of x value occur at below 700 °C and above 800 °C, respectively. However, the x value is limited to less than 0.1 at above 700 °C because of a high leakage current.

3.3 Role of Al atoms in $(TaC)_{1-x}Al_x$ gate electrode on V_{fb}

We expect that the positive V_{fb} shift occurs by the ϕ_m change in (TaC)_{1-x}Al_x gate electrode and/or bottom interface dipole formation due to AlO_x layer grown at HfO₂/SiO₂ interface during PMA at high temperature. Al₂O₃ dielectric is employed to eliminate the influence of the dipole due to AlO_x layer. The V_{fb} changes of Al_2O_3 MOS capacitors with TaC and (TaC)_{0.9}Al_{0.1} gate electrodes are shown in Fig. 6. It is clear that a positive $V_{\rm fb}$ shift in $(TaC)_{0.9}Al_{0.1}$ gate electrode significantly appears at above 800 °C, while TaC gate electrode is almost unchanged. This indicates that the $V_{\rm fb}$ shift is due to the φ_m change of (TaC)_{0.9}Al_{0.1} gate electrode. Moreover, this suggests that Al content in (TaC)_{0.9}Al_{0.1} gate electrode decreases because Al atoms of the gate electrode start diffusing into HfO₂ film at 800 °C. The V_{fb} behaviors of (TaC)_{0.9}Al_{0.1} gate electrode on HfO₂ film as a function of annealing temperature is shown in Fig. 7. The origin of V_{fb} shift can be divided into two components such as ϕ_m of $(TaC)_{0.9}Al_{0.1}$ gate electrode and bottom interface dipole formation due to AlO_x layer grown at HfO_2/SiO_2 interface. Note that effect of the dipole on V_{fb} shift appears at above 900 °C. Figure 8 is a schematic explanation of the role of Al atoms in (TaC)_{1-x}Al_x gate electrode on V_{fb} shift against annealing temperature. In the low temperature region below 700 °C, the effect of Al content on V_{fb} significantly appears. At above 800 °C, the ϕ_m of (TaC)_{1-x}Al_x gate electrode becomes higher because Al atoms diffuse into HfO₂ film. Finally, the AlO_x layer, which is formed at HfO₂/SiO₂ interface at above 900 °C, induces the bottom interface dipole.

4. Conclusions

We investigated V_{fb} behavior of $(TaC)_{1-x}Al_x$ gate electrode as a function of annealing temperature for HfO₂ MOS capacitors. The FCC structure and resistivity of $(TaC)_{1-x}Al_x$ films are almost unchanged regardless of x value in all

temperature regions. We found that role of Al atoms in (TaC)_{1-x}Al_x gate electrode on V_{fb} changes according to annealing temperature. In the low temperature region below 700 °C, Al (low ϕ_m) content causes a negative V_{fb} shift. In contrast, in the high temperature region above 800 °C, Al content reduction in (TaC)_{1-x}Al_x gate electrode and dipole formation due to AlO_x layer grown by diffusing Al atoms

into HfO₂ film lead to a positive V_{fb} shift. References

- [1] S. Jeon et al., J. The Electrochem. Soc. 157, 1101(2010).
- [2] M. Kadoshima et al., IEDM Tech. Dig. (2007) p.531.
- [3] J. K. Schaeffer et al., J. Appl. Phys. 101, 014503(2007).
- [4] W. Mizubayashi et al., VLSI Tech. Dig. (2008) p.42.
- [5] P. Homhuan et al., Ext. Abs. IWDTF (2011) p.9.
- [6] N. Yasuda et al., Ext. Abs. SSDM (2005) p.250.

Fig. 1. XRD patterns of $(TaC)_{1-x}Al_x$ films Fig. 2. Resistivity of different composition Fig. 3. The change in V_{fb} of $(TaC)_{1-x}Al_x/HfO_2$ after FGA at 400 °C in 3% H₂. All films (TaC)_{1-x}Al_x films as function of x value after (4.2 nm) MOS capacitors against x value after consist of FCC structure of TaC and show PMA at 500 - 1000 °C. Resistivity of all films is PMA at 500 - 700 °C. An inset graph shows C-V almost same lattice constant. almost unchanged in all PMA temperature. curves after FGA. A negative V_{fb} shift appears.

The C-V characteristics of HfO_2 MOS capacitors Fig. 5. The V_{fb} change as a function of x Fig. 4. with TaC and (TaC)_{0.9}Al_{0.1} gate electrodes, respectively, value of (TaC)_{1-x}Al_x gate electrodes after after PMA at 500 - 1000 °C. The C-V curves of (TaC)_{0.9}Al_{0.1} PMA at 500 - 1000 °C. A negative V_{fb} samples shift towards positive direction at above 800 °C, shift appears below 700 °C and a positive while the C-V curves of TaC samples are almost unchanged. V_{fb} shift appears above 800 °C.

Fig. 6. The $V_{\rm fb}$ change of $Al_2O_3~MOS$ capacitors with TaC and (TaC)_{0.9}Al_{0.1} gate electrodes as a function of PMA temperature. (TaC)_{0.9}Al_{0.1} gate shows a positive V_{fb} shift at above 800 °C.

Fig. 7. Relationship between V_{fb} shift and PMA temperature of (TaC)_{0.9}Al_{0.1}-gated MOS capacitors with Al₂O₃ and HfO₂ films. The origin of V_{fb} shift is due to $\phi_m \, change$ in $(TaC)_{0.9} Al_{0.1}$ at above 800 °C and dipole formation of due to AlO_x layer at above 900 °C.

Fig. 8. Schematic explaining the role of Al atoms in (TaC)_{1-x}Al_x gate electrode on V_{fb} shift against annealing temperature. At below 700 °C, Al content in (TaC)_{1-x}Al_x film causes a negative V_{fb} shift. At 800 °C, Al content in (TaC)_{1-x}Al_x film decreases because Al atoms diffuse into HfO₂ film. At above 900 °C, the dipole occurs because AlO_x layer is formed at HfO₂/SiO₂ interface.