Marked Suppression of the Fermi-level Pinning at Atomically Matched Fe₃Si/*p*-Ge(111) Contacts

K. Kasahara¹, S. Yamada¹, M. Miyao¹ and K. Hamaya^{1,2}

 ¹Department of Electronics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Phone: +81-92-802-2999(7956), E-mail: k_kasahara@nano.ed.kyushu-u.ac.jp
²PRESTO, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan.

1. Introduction

It is well known that the Fermi-level pinning (FLP) effect at many metal/germanium (Ge) interfaces is very strong. For the metal/*n*-Ge interfaces, the electrical properties show Schottky behavior with a high Schottky barrier height ($\Phi_{\rm B}$) of ~0.6 eV, while for the metal/*p*-Ge interfaces Ohmic characteristics are frequently observed [1,2].

Recently, we found that using Fe₃Si/Ge(111) contacts can reduce the FLP effect [3]. In particular, the rectifying currentvoltage (I-V) curves observed for the Fe₃Si/p-Ge(111) contacts were the first experimental demonstration of Schottky-like I-V behavior for directly connected metal/p-Ge contacts. In contrast, for the Fe₃Si/Ge(100) contacts, the electrical properties were dominated only by the strong FLP effect [3]. We consider that these differences between the Fe₃Si/Ge(111) and Fe₃Si/Ge(100) contacts are caused by the amount of the atomic matching at the interfaces between Fe₃Si and Ge. Figure 1(a) shows illustrations of the crystal structures for DO₃-ordered Fe₃Si and Ge. Here, we focus on the atomic arrangements looked at (111) and (100) planes for DO₃-ordered Fe₃Si and Ge [see Fig. 1(b)]. When we look at (111) plane, we find that the interface between Fe₃Si and Ge can completely match, having almost no dangling bond. In contrast, looking at (100) plane, we can find many atomic mismatches at the interface, giving rise to lots of dangling bonds.

If dangling bonds are major contributions to the strong FLP at metal/Ge interfaces, decreasing contact area (*A*) may obtain some information on the influence of the dangling bonds on the electrical properties for the atomically matched Fe₃Si/Ge(111) interface. In our previous work (Ref. 3), we used the Fe₃Si/Ge(111) diodes with a large *A* of ~10⁶ μ m². In this paper, we try to measure the *I-V* characteristics of the Fe₃Si/*p*-Ge(111) diodes with a small *A* of ~1 μ m².

2. Experimental details

Fe₃Si/*p*-Ge(111) contacts were fabricated by low-temperature molecular beam epitaxy (LTMBE) [3], where *p*-Ge (111) substrates were used already on the market and their impurity densities were ~9.0 × 10⁻¹⁴ cm⁻³. The chemical composition of the grown Fe₃Si layers was almost stoichiometric atomic composition [4]. After 25-nm-thick Fe₃Si layers were grown, a backside Al Ohmic contact was formed. And then, the Schottky diodes with *A* of ~1 μ m² were fabricated using electron beam lithography and Ar⁺ ion milling. Electrical properties of Fe₃Si/*p*-Ge(111)/Al diodes were measured by a standard dc method at various temperatures. As reference samples, we also fabricated the Fe₃Si/*p*-Ge(100)/Al diodes.

3. Results and Discussion

Figures 2(a) and (b) show the absolute value of the current (|I|) as a function of the bias voltage (V) at temperatures from 100 to 350 K for the two different diodes with A of ~1 μ m²

Fig. 1. (a) The illustration of the crystal structures of DO_3 -ordered Fe₃Si and Ge. (b) The top and bottom figures are the atomic arrangements of Fe₃Si and Ge, respectively, which show (100) plane (left) and (111) plane (right).

Fig. 2. (a) The significant rectifying *I-V* characteristics and (b) the symmetric *I-V* characteristics with respect to *V* polarity for the Fe₃Si/*p*-Ge(111) diodes at temperatures from 100 K to 350 K.

fabricated from an atomically matched Fe₃Si/*p*-Ge(111) junction. In Fig. 2(a) we can see clear rectifying characteristics at all temperatures, i.e., the Schottky behavior can be seen. These results mean that the FLP effect is suppressed markedly. In contrast, the almost symmetric *I-V* characteristics with respect to *V* polarity are also observed for all temperatures in Fig. 2(b). Thus, this diode has Ohmic *I-V* characteristics due to the strong FLP effect. We emphasize that Fe₃Si/*p*-Ge(111) diodes with *A* of ~ 1 μ m² show both characteristics, i.e., Schottky and Ohmic behavior.

In Fig. 3 we plot the ratio of the forward-bias I_{ON} (V < 0) to the reverse-bias current I_{OFF} (V > 0), i.e., I_{ON}/I_{OFF} at 100 K. In addition to the Fe₃Si/*p*-Ge(111) diodes with *A* of ~1 µm², we also show I_{ON}/I_{OFF} (100 K) for the Fe₃Si/*p*-Ge(111) diodes with *A* of ~10⁶ µm² and the Fe₃Si/*p*-Ge(100) diodes with *A* of ~1 µm². It should be noted that the I_{ON}/I_{OFF} (100 K) values split between 10⁰ ~ 10¹ and 10⁴ ~ 10⁷ for the Fe₃Si/*p*-Ge(111) diodes with *A* of ~1 µm². On the other hand, for the Fe₃Si/*p*-Ge(111) diodes with *A* of ~10⁶ µm² and the Fe₃Si/*p*-Ge(100) diodes with *A* of ~1 µm², the I_{ON}/I_{OFF} (100 K) values are almost constant, i.e., $I_{ON}/I_{OFF} = ~10^1$ and $= ~10^0$, respectively.

Judging from the data for the Fe₃Si/*p*-Ge(100) diodes, we can understand that I_{ON}/I_{OFF} (100 K) = ~10⁰ is caused by the Ohmic characteristic, as shown in the inset of Fig. 3, due to the strong FLP. Though small rectifications with I_{ON}/I_{OFF} (100 K) = 10¹ were seen in all the Fe₃Si/*p*-Ge(111) diodes with *A* of ~10⁶ µm², we can speculate that these features are attributed to the mixed contributions of the FLP and its suppression to the *I-V* characteristics [3]. On the other hand, the discreteness of the I_{ON}/I_{OFF} (100 K) values for the Fe₃Si/*p*-Ge(111) diodes with *A* of ~1 µm² is attributed to the two different situations, i.e.,

Fig. 3. The ratio of the forward-bias current I_{ON} (V < 0) to the reverse-bias current I_{OFF} (V > 0) at 100 K for the Fe₃Si/*p*-Ge(111) diodes with $A \sim 1 \text{ mm}^2$ and $\sim 10^6 \text{ mm}^2$, and the Fe₃Si/*p*-Ge(100) diodes with $A \sim 1 \text{ mm}^2$. The inset shows the *I*-*V* characteristic for the Fe₃Si/*p*-Ge(100) diode at 100 K.

almost no or a strong contribution of the FLP to the *I-V* characteristics. These features can be interpreted by the model based on the influence of the interfacial defects at the metal/Ge interface on the hole transport properties.

4. Conclusions

Decreasing the diode's contact aria *A* of the atomically matched Fe₃Si/*p*-Ge(111) to ~1 μ m², we clearly identified two different *I-V* characteristics, i.e., Schottky and Ohmic behavior, for the hole transport properties. These results indicate that there is an influence of extrinsic factors such as dangling bonds on the FLP effect at metal/Ge interfaces.

5. Acknowledgements

This work was partly supported by Industrial Technology Research Grant Program from NEDO.

References

- [1] A. Dimoulas et al., Appl. Phys. Lett. 89, 252110 (2006).
- [2] T. Nishimura et al., Appl. Phys. Lett. 91, 123123 (2007).
- [3] K. Yamane *et al.*, Appl. Phys. Lett. **96**, 162104 (2010).
- [4] K. Hamaya et al., Phys. Rev. B 83, 144411 (2011).