Controlling anion composition at MIS interfaces on III-V channels by plasma processing

Wipakorn Jevasuwan^{1,*}, Yuji Urabe¹, Tatsuro Maeda¹, Noriyuki Miyata¹, Tetsuji Yasuda¹, Akihiro Ohtake², Hisashi Yamada³, Masahiko Hata³, Sunghoon Lee⁴, Takuya Hoshii⁴, Mitsuru Takenaka⁴ and Shinichi Takagi⁴

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan;

Phone: +81-29-861-1148; Fax: +81-29-861-2576; E-mail: w-jevasuwan@aist.go.jp

²National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

³Sumitomo Chemical Co. Ltd., Tsukuba, Ibaraki 300-3294, Japan ⁴The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

1. Introduction

Scaling limit of Si LSIs has prompted intensive studies on MISFETs incorporating high-mobility materials such as Ge and III-V semiconductors. In order to form high-quality III-V MIS interfaces, the compositions and bonding structures of the cations and anions at the interface should be properly controlled [1]. We recently reported that deposition of SiO₂ or Al₂O₃ on nitride InGaAs formed the MIS interfaces that exhibit good capacitor characteristics [2]. Here the nitride layer formed by ECR plasma was thicker than 1 nm. From the viewpoint of EOT scaling, thinner nitride layers are preferable. In this paper, we investigate the effects of plasma cleaning and nitridation (< 0.5 nm) on InGaAs using on-line Auger electron spectroscopy (AES). Electrical characterization has shown that such lightly-nitrided Al₂O₃/InGaAs interfaces also show good MIS characteristics.

2. Experimental Procedures

Experiments were carried out using a high-vacuum compatible ALD system which was equipped with a remote RF plasma source and an analysis chamber for AES (Fig. 1). In order to fabricate MIS capacitors, n-type $In_{0.53}Ga_{0.47}As(100)$ epitaxial wafers with doping concentration of 3 x 10^{16} cm⁻³ were etched in an NH₄OH solution for 1 minute. The InGaAs surface was then subjected to plasma cleaning using H₂ and/or plasma nitridation using N₂ at 250 °C under the RF power of 300 W. ALD of Al₂O₃ was carried out using trimethylaluminium (Al(CH₃)₃) and H₂O at 250 °C. A high Al(CH₃)₃ dose was used in the first and second ALD cycles to enhance the interface-forming reaction [3]. Finally, post deposition annealing was done at 400 °C for 2 minutes prior to the Au electrode deposition.

3. Experimental results and Discussion

Changes of the InGaAs surface by plasma cleaning/ nitridation are shown in Fig. 2. N KLL and O KLL signals were normalized with respect to In MNN intensity. NH₄OH-etched InGaAs is covered with the surface oxide as shown by the O KLL signal (Fig. 2(a)). H₂ plasma cleaning effectively removes this oxide layer (Fig. 2(b)). Plasma-nitrided surface clearly shows the N KLL signal which partly overlaps with In MNN (Fig. 2(c)). By combining the plasma cleaning and nitridation (Fig. 2(d)),

Fig. 1 Experimental setups of a high-vacuum compatible ALD system equipped with AES and remote RF plasma source.

Fig. 2 AES spectra of InGaAs(100) substrate after various surface treatments at 250 $^{\circ}\text{C}.$

the surface is covered mainly by a nitride layer containing a small amount of oxygen which might come from the residual oxygen in the present plasma chamber.

Fig. 3 Ga 2p, As 2p, In 3d and N 1s XPS spectra of Al₂O₃ (~1 nm)/InGaAs. Initial InGaAs surfaces were treated at 250 °C by (a) 10 s H₂ plasma and (b) 10 s H₂ plasma and 5s nitridation.

In order to probe the coverage and bonding states of N at the interface, the InGaAs surfaces with 1 nm-thick Al_2O_3 cap layer were analyzed by XPS (Fig. 3). Spectra (a) and (b) in each plot are for the cases of plasma cleaning only and plasma cleaning/nitridation combination, respectively. N 1s peak, which is overlapped with the tail of the Ga Auger peak, is clearly observed for the nitride interface. The N coverage is estimated to be approximately 2 monolayer (~0.5 nm) from the ratio of N 1s to In $3d_{5/2}$. Ga $2p_{3/2}$ and As $2p_{3/2}$ peaks have a component with chemical shift of 1.0 and 2.9 eV, respectively. This result indicates that both Ga-N and As-N bonds exist at the lightly-nitrided $Al_2O_3/InGaAs$ interface. The chemical shift for Ga $2p_{3/2}$ agrees with that reported for the thick nitride [2], suggesting that N is the dominant anion at the interface.

The plasma cleaning and nitridation affect the MIS properties in distinct manners. Figure 4 compares the C-V characteristics for the Al2O3/InGaAs interfaces prepared with plasma cleaning only (a) and cleaning/nitridation combination (b). Reduction of the frequency dispersion under accumulation by plasma cleaning and nitridation indicates the smaller interface traps densities (D_{it}). Table I summarized the MIS capacitor properties for various surface treatment conditions. The ratio of the 100 and 1 MHz capacitances by measuring at V_{fb}+1V was used to quantify the frequency dispersion under accumulation. D_{it} was estimated by high/low frequency method. The MIS interfaces with nitridation shows well-behaved characteristics with nearly ideal V_{fb} and low D_{it}. H₂ plasma cleaning without nitridation degraded the properties as evidenced by a large positive shift in V_{fb} and increases in D_{it} and frequency dispersion under accumulation. These degraded properties can be recovered by adding the nitridation treatment as seen in Table I.

Fig. 4 C-V characteristics of $Au/Al_2O_3(6 \text{ nm})/ \text{ n-InGaAs}(100)$ capacitors with (a) 10 s H plasma and (b) 10 s H plasma with 5s nitridation at 250 °C.

Table I. Summary of MIS capacitor properties. V_{fb} is calculated for the 1 MHz data (Ideal V_{fb} = +0.55 V). D_{it} was estimated by high/low frequency method.

Conditions	V _{fb} shift (V)	Dit minimum (×10 ¹² cm ⁻² eV ⁻¹)	C _{100 Hz} /C _{1 MHz} @ V _{fb} +1 V
No plasma	+0.22	2.0	1.11
10 s H plasma	+0.47	3.5	1.62
5 s nitridation	0	1.3	1.10
10 s H plasma + 5 s nitridation	-0.07	1.2	1.09

Conclusions

The Al₂O₃/InGaAs capacitors with ~2 monolayer nitride interfaces showed well-behaved C-V characteristics. The H_2 plasma cleaning, which effectively removed the surface oxides of InGaAs, degraded the electrical properties, whereas the subsequent nitridation restored the MIS characteristics.

Acknowledgment

This study was supported by New Energy and Industrial Technology Development Organization (NEDO).

References

- [1] T. Yasuda *et al.*, Mater. Res. Soc. Symp. Proc. **1194E** (2010) A08-07-01~12.
- [2] T. Hoshii et al., Appl. Phys. Lett. 97 (2010) 132102.
- [3] W. Jevasuwan *et al.*, presented at *the 2011 MRS Spring Meeting (San Francisco, April, 2011).*