A 220nA 32-kHz Crystal Oscillator with wide Voltage Range (1.0 - 5.5 V) for Battery-Operated MCUs

Osamu Ozawa, Masashi Horiguchi, Yuichi Okuda, Akihito Anzai, Takayasu Ito, Hisao Shibata, Mitsuru Hiraki

Renesas Electronics Corp. 5-20-1 Josuihon-cho Kodaira, Tokyo 187-8588, Japan
Phone:+81-42-328-3098, e-mail: osamu.ozawa.wz@renesas.com

1. Introduction
This paper describes a low-power (220 nA) 32-kHz crystal oscillator operating over a wide voltage range (1.0 - 5.5 V) with a sufficient oscillation margin (10 times).

Most MCUs have a watch (RTC: real-time clock) function using a 32-kHz crystal oscillator, which is the only way to achieve an accuracy of 30 seconds/month (10-ppm error). Since the oscillator operates even in standby mode, its operation current should be minimized. Also it's necessary to operate at low voltage for the battery operation, while maintaining the compatibility with the legacy voltage (3.0 - 5.0 V).

Fig. 1(a) shows a conventional CMOS inverter type oscillator. [1] Since the oscillation power is proportional to the square of voltage, it is not suitable for low power. Using the regulator circuit for supplying a constant voltage is a general improvement method. However it yields extra current consumption and area increase. Fig. 1(b) shows a constant-current type oscillator [2][3][4]. Although it can operate over a wide voltage range, its temperature stability is poor because g_m of M_1 decreases at high temperature.

2. Low-power circuit design
Fig. 2 shows our proposed circuit. The two improvements towards low-current operation are PTAT (proportional to absolute temperature) bias current for the oscillator and an adaptive reference voltage for the comparator.

2.1 An oscillator with PTAT bias current
An effective way for low-power design is reducing the bias current I_D, which is a major part of the operating current of the oscillator. However, reducing I_D decreases the oscillation margin as described below. The oscillation margin is defined as the negative resistance R_N divided by the crystal's equivalent series resistance (R_e: about 60 kΩ). R_N can be measured by inserting a limiting resistance and observing the oscillation as shown in Fig. 1. By impedance analysis of the circuit, we obtain R_N as follows.

$$ R_N = -\frac{g_m}{\omega^2 C_s C_D} = -\frac{g_m}{(2\pi f_C)^2} = -\frac{q I_D}{n kT(2\pi f_C)^2} \tag{1} $$

since $g_m = q I_D / n kT$ (M_1 is in subthreshold region) and $C_s = C_D$ (q: elementary charge, k: Boltzmann constant, T: temperature, n: subthreshold-slope factor, ω: oscillation angular frequency). The crystal's load capacitance C_L is expressed as $C_L = C_s C_{inv}(C_D + C_s)$, where C_{inv} and C_D are the capacitances shown in Fig. 1. Thus, reducing I_D yields a smaller R_N.

Eq. (1) also indicates that a constant-current type circuit has a smaller oscillation margin at higher temperature because $R_N \propto 1/T$.

To ensure a sufficient margin at a high temperature an extra current is needed at a low temperature. From the above consideration, I_D is designed to be not constant but proportional to absolute temperature (PTAT), and the PTAT current supply circuit with a wide voltage range shown in Fig. 2 is used to keep at least 10-times oscillation margin ($R_N > 600$ kΩ) at any temperature.

2.2 A comparator with adaptive reference voltage
One of the issues of the common-source type oscillator circuit is the design of the comparator. The oscillator output signal XOUT is as small as 150 - 350 mVpp and its level is dependent on the V_{th} of M_1, which is affected by process and temperature variations. In addition, the center voltage of XOUT goes low from its DC level as the oscillation amplitude grows as shown in Fig. 3(a). This is because of the non-linear (exponential) characteristics of M_1 operating in the subthreshold region. The current of M_1, I_D, is proportional to the exponential of XIN, while the average of I_D is equal to I_{Q1}, as shown in Fig. 3(b). Therefore the center of XIN must be lower than its DC level. The center of XOUT also goes low through R_F. If the reference voltage V_{REF} for the comparator is not adjusted, the duty cycle of the output signal XC will be poor. In the worst case, the comparator will fail to detect the signal.

The adaptive reference voltage generator is designed to solve this problem. An nMOSFET M_2 with the same structure as M_1 is used to generate V_{REF} that follows fluctuations in V_{th}. In addition, the current density of M_2 is set to 1/10.5 that of M_1 by adjusting the current-mirror and channel-width ratios to cope with the center-voltage lowering.

3. Results of measurement
The oscillator circuit was implemented in an MCU fabricated with a 130-nm CMOS process as shown in Fig. 4. The circuit takes up 200 x 250 µm². The quartz crystal with the world's smallest C_L (3.1 pF; SSP-T7-FL from Seiko Instruments Inc.) was used in evaluation. The operation current was only 220 nA at 3.0 V, 25°C.

The evaluation results for I_D and R_N are shown in Fig. 5. The PTAT characteristic of I_D keeps R_N almost constant against variations in supply voltage (a) and temperature (b). Moreover, the measured results are close to the simulation results. As a result, a sufficient oscillation margin (10 times) is ensured even under the worst conditions. The evaluation results for duty cycle against the supply voltage and nMOSFET's V_{th} are shown in Figs. 6(a) and (b), respectively. The adaptive reference voltage keeps the duty cycle almost constant.

The characteristics of this circuit are summarized in Table 1. The circuit is expected to realize the smallest MCU standby current 420 nA.

4. Conclusion
A 220-nA 32-kHz crystal-oscillator circuit has been designed and evaluated. It can operate at 1.0 - 5.5 V while an oscillation margin of 10 times is maintained even under worst conditions. Using an nMOSFET common-source circuit with PTAT supply current provides an almost constant oscillation margin over wide voltage and temperature ranges. The comparator using an adaptive reference voltage can detect a small and process- and temperature-dependent oscillation signal. The circuit was applied in an MCU for extended battery life.
5. Acknowledgments
The authors would like to thank H. Souma, S. Yamamoto and O. Tanabe of Seiko Instruments Inc. for providing the low-CL quartz crystal devices and measurement support. We also thank Dr. T. Miki, M. Iwabuchi, Dr. T. Oishi, T. Yamaguchi, M. Mizuno, B. Nameki, M. Hata, K. Kotani, M. Ueda, A. Yamada, K. Tanaka, T. Takahashi and M. Ohta for technical discussions, and K.Ohya, T. Shimizu and A.Hoshino for measurement support.

References

Fig. 1 Conventional crystal oscillator circuits
(a) CMOS Inverter type (b) Constant current type

Fig. 2 Proposed crystal oscillator circuit
PTAT bias generator Adaptive comparator

Fig. 3 Oscillation waveforms
(a) Center-voltage lowering (b) Current waveform

Fig. 4 Chip micrographs
Fig. 5 Bias current (I_D) and negative resistance
(a) Voltage dependence (b) Temperature dependence

Fig. 6 Measured results for duty cycle
(a) Voltage dependence (b) Process dependence

Table.1 Comparison of crystal oscillator circuits

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>[5]</th>
<th>[6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage range</td>
<td>1.0-5.5 V</td>
<td>1.62-3.6 V</td>
<td>1.65-3.6 V</td>
</tr>
<tr>
<td>Temperature</td>
<td>-40-85 °C</td>
<td>-40-85 °C</td>
<td>-40-85 °C</td>
</tr>
<tr>
<td>Process node</td>
<td>130 nm</td>
<td>NA</td>
<td>130 nm</td>
</tr>
<tr>
<td>Gate oxide thickness</td>
<td>15 nm</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MCU Standby current (watch mode)@3.0 V</td>
<td>420 nA</td>
<td>900 nA</td>
<td>1.0mA @1.8V</td>
</tr>
<tr>
<td>Load capacitance C_L</td>
<td>3.1 pF</td>
<td>6-12.5 pF</td>
<td><7.5pF</td>
</tr>
<tr>
<td>Oscillator current</td>
<td>220nA @ 3.0 V</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Oscillation margin</td>
<td>10.1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Oscillation startup time</td>
<td>0.58 s</td>
<td>NA</td>
<td>~1.0 s</td>
</tr>
<tr>
<td>Minimum oscillation Voltage</td>
<td>0.70 V</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Area 200×250 µm²</td>
<td>200-250 µm²</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

*32-kHz oscillator + RTC