Steady-state solution for dark states using a three-level system in coupled quantum dots

Tetsufumi Tanamoto¹, Keiji Ono² and Franco Nori^{3,4}

¹Corporate R & D center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582, Japan

Phone: +81-44-549-2192 E-mail: tetsufumi.tanamoto@toshiba.co.jp

²Low Temperature Physics Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan

³Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan

³Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

1. Introduction

Future quantum communication systems might be composed of optical fiber networks and quantum computers based on solid-state qubits. In this respect, an efficient interconnection between optical and solid-state systems should be developed. Quantum dot (QD) systems, such as GaAs/AlGaAs¹ have discrete energy levels which are suitable for the transfer of photon or phonon energies to electrons in solid-state circuits. Here, we theoretically discuss the interaction between an electromagnetic field and a coupled double QD (DQD) system by focusing on transport properties of three-level system. By adjusting two laser fields, the electron population between the lowest two energy-levels are coherently transferred (coherent population trapping (CPT) or electromagnetically induced transparency $(EIT)^{2-4}$). We derive the density matrix equations in three-level DQD systems, and derive a steady-state solution for a dark state. We investigate a relationship between the time-dependent current characteristic and the dark state.

2. Formulation

A three-energy-level DQD system is realized under a large bias voltage as depicted in Fig.1, in which there is one energy-level (E_1) in the left QD and two $(E_2$ and $E_3)$ in the right QD. We assume a strong Coulomb blockade regime in which only one excess electron is allowed in each QD. We also assume that the left energy-level E_1 is close to the right upper energy-level E_3 such that electrons in QD 1 tunnel directly into E_3 $(E_3 - E_1 \ll \Omega_L)$; and Ω_L is the tunneling rate between QD1 and QD2).

The Hamiltonian is $H = H_0 + H_t + H_l + H_{\gamma}$, where

$$H_{0} = E_{1}|1\rangle\langle1| + E_{2}|2\rangle\langle2| + E_{3}|3\rangle\langle3|,$$

$$H_{t} = -(\Omega_{L}|1\rangle\langle3| + \Omega_{R}e^{-\nu_{R}t}|2\rangle\langle3|) + \text{h.c.},$$

$$H_{l} = \sum_{\alpha=L,R}\sum_{k_{\alpha}}E_{k_{\alpha}}|k_{\alpha}\rangle\langle k_{\alpha}|,$$

$$H_{\gamma} = \sum_{k_{L}}V_{L}|k_{L}\rangle\langle1| + \sum_{k_{R}}V_{R}|k_{R}\rangle\langle2| + \text{h.c.}$$
(1)

Here $|i\rangle$ (i = 1, 2, 3) is the energy-level in QDs, $|k_L\rangle$ $(|k_R\rangle)$ is the left(right) electrode state. Ω_R is a transition rate between E_2 and E_3 . V_L (V_R) are the tunneling strengths of electrons between the left (right) electrode and the left (right) QD. ν_L and ν_R are electromagnetic fields between E_1 and E_3 , and that between E_3 and E_2 . The density matrix $\rho_{ij} \equiv |i\rangle\langle j|$ at T = 0is derived by $\dot{\rho} = -\frac{i}{\hbar}[H,\rho] - \frac{1}{2}\{\Gamma,\rho\}$ similarly to Ref.⁵ and given by $(\rho_{32} = \rho_{32}e^{-i\nu_R t}, \rho_{31} = \rho_{31}e^{-i\nu_L t}$, and $\rho_{21} = \rho_{21}e^{-i[\nu_R - \nu_L]t}$): $\dot{\rho}_{00} = \Gamma_1^{(h)}\tilde{\rho}_{11} + \Gamma_2^{(h)}\tilde{\rho}_{22} + \Gamma_3^{(h)}\tilde{\rho}_{33} - [\Gamma_1^{(e)} + \Gamma_2^{(e)} + \Gamma_3^{(e)}]\tilde{\rho}_{00}$,

FIG. 1: (a)A three-level system in double QDs (DQDs). A bias voltage is applied between the left and right electrodes. (b) A density matrix for the three level. We define $E_x \equiv E_3 - E_1$ and $E_y \equiv E_3 - E_2$. The dark state is a state with $\rho_{33} = 0$.

FIG. 2: The Ω_R need for realizing a dark state, as a function of E_y and γ_0 . Here, $\gamma_{21} = 0$, $t_0 = 0$ and $\Gamma_1 = \Gamma_2 = \Gamma_3$. These are solutions of $\rho_{33} = 0$ in Eq.(3).

$$\begin{split} \tilde{\rho}_{11} &= \Gamma_{1}^{(e)} \tilde{\rho}_{00} - \Gamma_{1}^{(h)} \tilde{\rho}_{11} + i\Omega_{L}^{*} \tilde{\rho}_{31} - i\Omega_{L} \tilde{\rho}_{13} + it_{0} (\tilde{\rho}_{12} - \tilde{\rho}_{21}), \\ \dot{\tilde{\rho}}_{22} &= \Gamma_{2}^{(e)} \tilde{\rho}_{00} - \Gamma_{2}^{(h)} \tilde{\rho}_{22} + i\Omega_{R}^{*} \tilde{\rho}_{32} - i\Omega_{R} \tilde{\rho}_{23} - it_{0} (\tilde{\rho}_{12} - \tilde{\rho}_{21}), \\ \dot{\tilde{\rho}}_{33} &= \Gamma_{3}^{(e)} \tilde{\rho}_{00} - \Gamma_{3}^{(h)} \tilde{\rho}_{33} + i\Omega_{L} \tilde{\rho}_{13} - i\Omega_{L}^{*} \tilde{\rho}_{31} + i\Omega_{R} \tilde{\rho}_{23} - i\Omega_{R}^{*} \tilde{\rho}_{32}, \\ \dot{\tilde{\rho}}_{31} &= -(i[\omega_{31} - \nu_{L}] + \gamma_{31}) \tilde{\rho}_{31} - i\Omega_{L} (\tilde{\rho}_{33} - \tilde{\rho}_{11}) + i\Omega_{R} \tilde{\rho}_{21}, \\ \dot{\tilde{\rho}}_{32} &= -(i[\omega_{32} - \nu_{R} + \nu_{L}] + \gamma_{32}) \tilde{\rho}_{32} - i\Omega_{R} (\tilde{\rho}_{33} - \tilde{\rho}_{22}) + i\Omega_{L} \tilde{\rho}_{12}, \\ \dot{\tilde{\rho}}_{21} &= -(i[\omega_{21} + \nu_{R}] + \gamma_{21}) \tilde{\rho}_{21} - i\Omega_{L} \tilde{\rho}_{23} + i\Omega_{R}^{*} \tilde{\rho}_{31} \\ - it_{0} (\tilde{\rho}_{11} - \tilde{\rho}_{22}), \end{split}$$

where γ_{31} , γ_{32} and γ_{21} include decoherence such as acoustic phonons. ρ_{i0} and ρ_{0i} are separated and solved analytically but these are irrelevant to the equations regarding transport properties. Γ_i^e represents an electron tunneling from the DQD to the electrodes and $\Gamma_i^{(h)}$ represents that from the electrodes to the DQD. Depending on the relative positions of E_1 , E_2 and E_3 , we can classify the electron transport. In this paper we consider the case shown in Fig. 1 and set $\Gamma_2^{(e)} = 0$, $\Gamma_1^{(h)} = 0$, and $\Gamma_3^{(e)} = 0$ (this is the case in which dark state explicitly exists). Hereafter we consider $\gamma_{31} = \gamma_0 = \gamma_{32}$ and $\nu_L = 0$.

3. Steady-state solutions for the dark state

Steady-state solutions are obtained from the density matrix equations when $d\rho_{ij}/dt = 0$. Compared with the optical three-level⁶, the existence of the ρ_{00} state complicates the equations. Dark state corresponds to the case where there is no electron state in E_3 as $\tilde{\rho}_{33} = 0$. When $t_0 = 0$, we can express the steady-state solution by fourth-order polynomial equations of E_x , E_y and Ω_R , such as

$$\rho_{33} \propto A_{33} (\Omega_R / \Omega_L)^4 + B_{33} (\Omega_R / \Omega_L)^2 + C_{33} = 0, \quad (3)$$

where

$$A_{33} = \gamma_0'(-\Gamma_2' + \gamma_{21}'), \tag{4}$$

$$B_{33} = -E'_{y}D'_{z}\Gamma'_{2}\gamma'_{21} + D^{2'}_{z}(\Gamma_{2}' + \gamma_{0}')\gamma_{0}' + \gamma_{21}'\gamma_{0}' + \gamma^{2}_{21}'\gamma^{2'}_{0},$$
(5)

$$C_{33} = \Gamma_{2}' \gamma_{0}' ((1 + D'_{z} E'_{y})^{2} + \gamma_{21}^{2}' E_{y}^{2'} + (D_{z}^{2'} + \gamma_{21}^{2}') \gamma_{0}^{2'} + 2\gamma_{21}' \gamma_{0}'), \qquad (6)$$

with $D_z \equiv E_x - E_y$ (all quantities are rescaled by Ω_L and indicated by the prime symbol, such as $\Gamma'_2 = \Gamma_2/\Omega_L$). This equation is a parabolic function regarding Ω_R^2 with $C_{33} > 0$. Thus, if $\Gamma_2 > \gamma_{21}$, $\rho_{33}(\Omega_R^2) = 0$ has a solution for positive Ω_R^2 . Also when $\Gamma_2 > \gamma_{21}$, the coefficient of Ω_R^4 has a negative value, therefore, the Ω_R^2 of Eq.(3) for the dark state is a maximum value for the solutions of the density matrix equations to be valid. Figure 2 plots Ω_R , which satisfies $\rho_{33}(\Omega_R^2) = 0$ as a function of E_y/Ω_L . Note that, when E_y increases, Ω_R should increase.

4. Time-dependent current

Here, we show numerical results of the time-dependent matrix element ρ_{33} and current. Ω_R is calculated from Eq. (3) such that the initial E_y is given, e.g., as $E_y/\Omega_L =$ 2. Figure 3 shows the time-dependent density matrix element ρ_{33} when $E_x = 0$, $t_0 = 0$ and $\gamma_{21} = 0$ starting from (a) $|1\rangle$ and (b) $(|1\rangle + |2\rangle)/2$. It can be seen that, as E_y decreases, $\rho_{33}(t)$ decreases. As mentioned above, Ω_R is determined such that it satisfies the steady-state solution $\rho_{33}(t \to \infty) \to 0$ for $E_y/\Omega_L = 2$ where $\rho_{33}(t \to \infty)$ has the lowest values. Compared with Fig 3(a), Figure 3(b) oscillates faster. This is because for the superposition state, the density population of electrons oscillates between $|1\rangle$ and $|2\rangle$ more often than the case starting from $|1\rangle$.

Figure 4 show the time-dependent currents through the DQD system. The current is derived⁷ as $I(t) = \Gamma_R(\rho_{33}(t) + \rho_{22}(t))$. Here we consider $\tilde{I}(t) \equiv e^{i\nu_R t} I(t)$. Ω_R is determined similarly to Fig 3. Thus current is expected to be reduced at $E_y/\Omega_L = 2$. Figures 4(a,c) shows that current decreases around the expected dark state. Figures 4(c, d) show time-dependent currents starting from a superposition state of $(|1\rangle + |2\rangle)/2$. Compared with Figs. 4(a, c), Figs 4(b, d) show that a finite leak tunneling ($t_0 = 0.5$ and $\gamma_{21} = 0.5$) leads to a small current reduction, and the evidence of the dark state disappears regardless of the initial state.

FIG. 3: Time-dependent density matrix elements $\rho_{33}(t)$ starting from an initial state of (a) $|1\rangle$ and (b) $(|1\rangle + |2\rangle)/2$. Here, $\gamma_0/\Omega_L = 1$, $t_0 = 0$ and $\gamma_{21} = 0$. Also, $E_y/\Omega_L = 5$ corresponds to the solution of Eq.(3).

FIG. 4: Time-dependent current as a function of E_y starting from $|1\rangle$ for (a) and (b), $(|1\rangle + |2\rangle)/2$ for (c) and (d). $\Gamma_1/\Omega_L = \Gamma_2/\Omega_L = \Gamma_3/\Omega_L =$, $\gamma_0/\Omega_L = 1$, (a)(c) $t_0/\Omega_L = 0$ and $\gamma_{21}/\Omega_L = 0$. (b)(d) $t_0/\Omega_L = 1$ and $\gamma_{21}/\Omega_L = 1$.

5. Conclusion

We theoretically solved the steady-state solutions of the density matrix equations for a thee-level DQD system, and showed the condition of the appearance of a dark state. Numerical calculations for time-dependent current characteristics showed that the steady-state can be detected by measuring current.

- ¹ K. Ono and S. Tarucha, Phys. Rev. Lett. **92** 256803 (2004).
- ² S. E. Harris, Phys. Today 50, 7, 36 (1997).
- ³ M. Fleischhauer *et al.*, Rev. Mod. Phys. **77**, 633 (2005).
- ⁴ H. Ian *et al.*, Phys. Rev. A **81**, 063823 (2010).
- ⁵ S.S. Ke and G.X. Li, J. Phys. Condens. Matter **20** 175224

(2008).

- ⁶ R.G. Brewer and E.L. Hahn, Phys. Rev. B **11**, 1641 (1975).
- $^7\,$ T. Tanamoto and X. Hu, Phys. Rev. B $69,\,115301$ (2004).