Extraction enhanced lateral IGBT (E²LIGBT) : A super high speed LIGBT superior to LDMOS

Youichi Ashida, Shigeki Takahashi, Satoshi Shiraki, Norihito Tokura, and Akio Nakagawa*

DENSO CORPORATION, Koto-cho, Nukata-gun, Aichi 444-0193, Japan
Phone: +81-564-56-7461, Email: YOUICHI_ASHIDA@denso.co.jp
*Nakagawa Consulting Office, 3-8-74 Hamatake, Chigasaki-shi, Kanagawa 253-0021, Japan

1. Introduction
Lateral IGBTs (LIGBT) have been frequently integrated into power ICs such as DCDC converters [1] or micro-inverters [2]. In order to miniaturize the system, high speed and high frequency operation of LIGBT has been strongly demanded. Nakagawa et al. developed SOI-LIGBT with a lightly doped p-layer collector, resulting in fall-time $t_{off}=300\text{ns}$, on-state voltage $V_{ON}=3.0\text{V}$ (120/A/cm²), and breakdown voltage $BV_{CES}=500\text{V}$ [2, 3]. Kaneko et al. developed junction-isolated hybrid IGBT with employing anode short and electron irradiation, resulting in turn-off time $t_{off}=50\text{ns}$, $V_{ON}=5.5\text{V}$ (68A/cm²), and $BV_{CES}=800\text{V}$ [1]. Sin et al. developed HSINFET, where the anode contains p-emitter and Schottky contact on n-drift, resulting in $t_{off}=50\text{ns}$, $R_{ON}=70\Omega$, and $BV_{CES}=130\text{V}$ [4]. However, all the devices, thus far reported, were still slower in switching speed than lateral DMOS (LDMOS), although their on-resistances were lower than that of LDMOS.

We have successfully developed novel Extraction Enhanced LIGBT (E²LIGBT) performing a super-high speed ($t_{off}=34\text{ns}$) and a low forward voltage ($V_{ON}=3.7\text{V}$ at 84A/cm²) with a high breakdown voltage of 738V. For the first time, both the switching speed and on-resistance of the developed E²LIGBTs are simultaneously superior to those of lateral DMOS.

2. Device concept
2-1. Electron Extraction by Schottky contact on p-layer
We propose a new anode structure, a combination of a narrow p+-injector and a wide Schottky contact on lightly doped p-layer with an n-buffer, as shown in Fig. 1. Electrons flow from the channel toward the anode, forward biasing the n-buffer/p+-injector junction. Holes are injected from the narrow p+-injector (S₂) toward n-drift under the anode region, resulting in high conductivity modulation. The wide Schottky contact (S₁) extracts a large portion of electrons flowing along the Schottky contact. The conductivity modulation in the anode region can be controlled by the area ratio of the Schottky area over the p+-injector. It was found that the conductivity modulation in the anode region can be controlled by the area ratio of the Schottky area over the p+-injector. This means that both a low V_{ON} and a short t_{off} will be achieved by designing an adequate ratio, S_1/S_2. It is also expected that the electrical characteristics are highly independent from temperature because they are determined by the area ratio, S_1/S_2.

We report, for the first time, that the Schottky contact on the lightly doped p-layer is far better than the Schottky contact directly on the n-drift or the n-buffer too much suppresses the hole injection from the p+-injector, and forces a high forward voltage as seen in HSINFET [4]. The conductivity modulation can be precisely tuned by the area ratio only if the Schottky contact is placed on the lightly doped p-layer.

2-2. Evaluation of the effect of Schottky contact on p-layer
Device simulation of E²LIGBT is carried out in order to evaluate the effect of the Schottky contact on the p-layer. The detailed device parameters of the simulated and fabricated devices are given in Section 3-1 below. Conventional LIGBT without the Schottky contact is also calculated and compared. Fig. 2 shows the simulated hole density distributions at the anode region for (a) E²LIGBT and (b) conv. LIGBT under $V_G=7\text{V}$ and $I=200\text{mA}$ (84A/cm²). Hole density at point-A in E²LIGBT is $7.0\times10^{16} \text{cm}^{-3}$ which is significantly lower than that of conv. LIGBT. Thus, the conductivity modulation at anode region is effectively suppressed by the Schottky contact on the p-layer.

3. Results and discussion
3-1. Device fabrication
E²LIGBT was fabricated using SOI wafer of 15µm thick silicon and 5µm BOX. An interface n-diffusion-layer with the dose of $1.5\times10^{15} \text{cm}^{-2}$ was introduced on the BOX [5], as shown in Fig. 1, in order to increase the breakdown voltage by 150V. If the interface n-diffusion-layer is not used, a thick BOX of 8µm is required to realize the same breakdown voltage. Fig. 3(a) shows the photo of E²LIGBT. The cell pattern is truck shape and the collector is located at the center. The area ratio, S_1/S_2, were chosen to be 33, if not specified. Fig. 3(b) shows the LDMOS consisting of 36 cells. LDMOS has the total device area of 1.9mm², which is 7.9 times larger than that of E²LIGBT.

3-2. DC characteristics
High blocking voltages of 738V for E²LIGBT and 731V for LDMOS were achieved as seen in Fig. 4(a). The I-V characteristics are shown in Fig. 4(b). The on-state voltage, V_{ON}, of E²LIGBT is 3.7V for $V_G=7\text{V}$, $I=200\text{mA}$, whereas V_{ON} of LDMOS is 6.3V for the same condition. Although the device area of LDMOS is 7.9 times greater than that of E²LIGBT, the on-resistance of LDMOS is worse than that of E²LIGBT.

3-3 Turn-off characteristics
Turn-off time, t_{off}, of the fabricated devices were measured under an inductive load. Fig. 5 shows S_1/S_2 dependence of t_{off} for E²LIGBT. The short t_{off} of 34ns is obtained at $S_1/S_2=33$. It is clearly verified that t_{off} of E²LIGBT is simply determined by S_1/S_2. Fig. 6 shows measured turn-off waveforms. The measured t_{off} of 34ns of E²LIGBT is considerably shorter than 44ns of LDMOS.
The switching loss, \(E_{\text{OFF}} \), of E2LIGBT hardly depends on temperature. The switching loss, \(E_{\text{OFF}} \), of E2LIGBT is remarkably smaller than that of LDMOS, as seen in Fig. 7(b). Especially, the temperature dependence of \(V_{\text{ON}} \) of E2LIGBT is far better than that of LDMOS, as seen in Fig. 7(c).

Fig. 8 compares trade-off relation between current density at 3V of \(V_{\text{ON}} \) and fall time/turn-off time among all the reported high voltage lateral MOS power devices. It is clear that the trade-off of E2LIGBT is the most excellent compared with those of all the other lateral silicon power devices, so far reported. Especially, E2LIGBT with \(S_{E}/S_{I}=33 \) is better than LDMOS both in on-resistance and switching speed.

Acknowledgements

The authors would like to thank Koji Senda and Takeshi Sakai for sample preparation, Shogo Ikeura for measurement, Hisato Kato and Shunsuke Harada for TCAD simulation.

References