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1. Introduction 

Most solar cells produced currently are silicon based. 

However, the optical absorption coefficient of crystalline Si 

is much smaller than those for GaAs and CdTe. Thus, Si 

with a thickness of at least 100 µm is required to form 

crystalline Si solar cells. Therefore, novel Si-based materi-

als are of great interest for high-efficiency solar cells. We 

have focused on orthorhombic barium disilicide (BaSi2) as 

an interesting and useful Si-based material for solar cells. 

This is because BaSi2, composed of abundant elements Ba 

and Si, has a band gap of approximately 1.3 eV, matching 

the solar spectrum. In addition, it has a very large optical 

absorption coefficient of approximately 3×10
4
 cm

-1
 at 1.5 

eV [1,2]. This value is approximately 100 times higher than 

that of crystalline Si. Although, BaSi2 can be grown epi-

taxially on Si (111) [3,4], it is more favorable if we can 

grow high-quality BaSi2 films on inexpensive SiO2 sub-

strates. Thin film crystalline Si on a glass wafer has been 

investigated intensively for many applications such as thin 

film transistors and solar cells [5,6]. For that reason, 

high-quality <111>-oriented polycrystalline Si (poly-Si) 

thin layers formed on SiO2 is demanded for high-efficient 

and low-cost crystalline BaSi2 solar cells. The Al induced 

crystallization (AIC) method is known as a method for ob-

taining large grained poly-Si thin layers [7], where amor-

phous Si (a-Si) layers on Al was transformed into crystal-

line phase via exchange between the Al and Si layers dur-

ing the annealing. A preferential (111) orientation of the Si 

layers was reported, and this is favorable for the subsequent 

growth of BaSi2 layers [8]. However, there still remains an 

open question about what determines the preferential ori-

entation of AIC-Si layers. For examples, Kurosawa et al. 

reported that the preferential orientation of AIC-Si can be 

controlled by changing the air exposure time of Al, and 

proposed a model explaining that the orientation of AIC-Si 

is determined by the crystallinity of an Al oxide diffusion 

barrier layer [9]. In contract, Jung et al. reported that the 

preferential orientation depends on the annealing tempera-

ture, and proposed a model stating that the growth rate of 

AIC-Si determines the preferential orientation [10].  

In this study, we aimed to investigate factors such as 

diffusion barrier layer thickness, and the surface condition 

of a SiO2 substrate, that may have decisive influence on the 

preferential orientation of AIC-Si. 

 

2. Experiment 

The growth conditions for AIC-Si are summarized in 

Table I. The fused silica (SiO2) wafers, and those processed 

by fluorinated acid (HF) were used as a substrate. We also 

employed SiO2 wafers covered with Al-doped zinc oxide 

(AZO) (Al2O3:2wt%) by sputtering. First, a 100-nm-thick 

Al film was sputtered at room temperature (RT) on these 

substrates. Next, the SiO2 layers was sputtered at RT as a 

diffusion barrier layer in samples A-D, or just air exposure 

was performed for 48 h in samples E-G to form a native Al 

oxide layer. Then, a 100-nm-thick Si film was sputtered at 

RT. All sputterings were carried out by a radio-frequency 

(RF) magnetron sputtering method. During sputtering the 

vacuum level was 0.2 Pa, and the RF power was 100 W. 

The AIC process was performed by annealing samples in 

dry-N2 atmosphere at 500°C for 10 h. The surface mor-

phology and the oxide layer were evaluated by atomic force 

microscopy (AFM), and its crystal orientation was charac-

terized by electron backscatter diffraction (EBSD).  

 Table I. Sample preparation conditions 

Sample Substrate 

Al 

(nm) 

Diffusion 

barrier layer 

(nm)  

Si 

(nm) 

 

A SiO2  100 SiO2 (2) 100 

B 

Covered with 

AZO 

(400 nm) 

100 SiO2 (2) 100 

C SiO2  100 SiO2 (10) 100 

D 

Covered with 

AZO 

(400 nm) 

100 SiO2 (10) 100 

E SiO2  100 native Al-O 100 

F 

Covered with 

AZO 

(400 nm) 

100 native Al-O 100 

G 

Processed 

with HF  

SiO2 wafer 

100 native Al-O 100 
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3. Results and discussion 

After the annealing, layer exchange between the a-Si 

and Al layers occurred in all the samples. Figures 1(a)-1(g) 

show the inverse pole figures obtained for samples A-G, 

respectively. The Al top layers were etched away prior to 

the EBSP measurements. As shown in Fig. 1(e), AIC-Si 

layers in sample E, grown with a conventional AIC method 

on SiO2, showed <111>-orientation as previously reported 

[11]. Similar results were obtained in sample G. In contrast, 

when we inserted a 2-nm-SiO2 diffusion barrier in sample 

A, the preferential orientation drastically changed from 

<111>-orientation to <100>-orientation even on SiO2, as 

shown in Fig. 1(a). When the SiO2 barrier layer was in-

creased to 10 nm, in sample C, the AIC-Si was preferen-

tially <111>-oriented. Therefore, it can be said that the 

preferential orientation of AIC-Si is influenced by the 

thickness of a SiO2 diffusion barrier. 

  

(a) Sample A           (b) Sample B 
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Fig.1 Inverse pole figures of AIC-Si (a) sample A, (b) sample B, 

(c) sample C, (d) sample D, (e) sample E, (f) sample F and (g) 

sample G.  

At present, we don’t have enough data to discuss the thick-

ness of the native Al oxide layer in sample E. But, if this 

layer is found to be thicker than 2 nm by transmission elec-

tron microscopy, we can say that with increasing a SiO2 

diffusion-barrier layer thickness, the AIC-Si layer becomes 

preferentially <111>-oriented.  

We next discuss the crystal orientation of AIC-Si layers 

formed on SiO2 substrates capped with AZO layer. In sam-

ple F, even prepared with a conventional AIC method,  

<100>-orientation becomes dominant. This result is differ-

ent from that obtained in sample E. We can say that the 

preferential orientation of AIC-Si may change depending 

on a substrate used. However, with increasing SiO2 diffu-

sion barrier layer thickness from 2 nm in sample B to 10 

nm in sample D, the preferential orientation of AIC-Si 

changed from <100>-orientation to <111>-orientation as 

shown in Figs. 1 (b) and 1(d). This tendency is almost the 

same as we observed for the AIC-Si layers on SiO2 sub-

strate without AZO capping layers in samples A and C. On 

the basis of these results, it can at least be stated that as the 

SiO2 diffusion layer thickness increases, the AIC-Si layers 

becomes <111>-oriented.  

 

4. Conclusions 

The crystal orientation of AIC-Si was investigated by 

EBSD. It was found that <111> orientation became domi-

nant for both AIC-Si layers formed on SiO2 and also those 

on SiO2 capped with crystalline AZO layers.  
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