Impact of Zirconia addition for ALD Hafina in HKMG Device Fabricated GF vs. GL

C. K. Chiang^{1,3}, C. H. Wu², H. Y. Huang¹, J. F. Lin³, C. L. Yang³, J. Y. Wu³ and S. J. Wang^{1,*}

¹Institute of Microelectronics, Dept. of Electrical Eng., National Cheng Kung Univ., Tainan, Taiwan, ROC

²Dept. of Microeletronics Eng., Chung Hua Univ., Hsinchu, Taiwan, ROC

³United Microelectronics Corporation, Science-Based Industrial Park, Hsinchu, Taiwan, ROC

*Phone: +886-6-2757575-62351, Fax: +886-6-2763882, E-mail: sjwang@mail.ncku.edu.tw

1. Introduction

Hf-based dielectrics suffer from mobility degradation, charge trapping and poor reliability [1]. Doped high-k with rare-earth element via dielectric cappings (LaO, DyO, etc.) has been demonstrated as a practical solution to achieve low V_T nMOSFETs [2-3] for advanced technologies. Hafina (HfO₂) and Zircon ia (ZrO₂) have very similar physical and chemical properties [4]. Among all the binary materials HfZrO_x films were shown to present higher reliability and mobility than HfO₂ thin films [5-6]. In this stud y, we investigated an extensive physical characterization of HfZrO_x dielectrics as a function of Zr concentration ratio (Zr%). Furthermore, Hf ZrO_x MOSCAPs we re fabricated to understand the impact of ZrO₂ addition for ALD HfO₂ on device properties by changing the Zr% and ZrO₂ position in gate stack with Gate First (GF) and Gate Last (GL) process flow comparison.

2. Experimental

The MOSCAP sample fabrication flow is shown in **Fig. 1**. The single $(HfO_2 \text{ or } ZrO_2)$ or bi-layer $(HfZrO_x)$ high-k dielectric were deposited by ALD on the th ermal grown SiO₂. The different Zr% eff ect and ZrO₂ position in HfO₂ were study. GF and GL process were compared in this work. Thin La $_2O_3$ caps was deposited for nMOSCAP effective workfunction (EWF) tuning und er GF process. The different N/P metal were used for GL EWF tuning.

3. Results and Discussion

The Fig. 2(a) shows band gap (E g) analysis by spectroscopic ellipsometry, the band gap of HfZrOx decreased when ZrO2 addition with HfO2. Preliminary result of Plan-View TEM for HfO2 (Fig. 2(b)) and $HfZrO_x$ (Fig. 2(c)), respectively. The $HfZrO_x$ grain size shows smaller than HfO2. We believe that the change in grain-size plays a role in reducing charge trapping in HfO2. In Fig. 3, cross section HR-TEM image of HfO₂/SiO₂ (Fig. 3(a)) and HfZrO_x/SiO₂ with different ZrO₂ position at Top (Fig. 3(b)), Center (Fig. 3(c)) and Bottom (Fig. 3(d)) after annealing at 1050°C. A uniform contrast indicates a compositional uniformity. Both Hf-based dielectric are polycrystalline with similar bulk dielectric thickness and interface oxide thickness. ZrO2 was mixed into HfO₂ for three different ZrO₂ position samples, due to the differences in the lattice constants of ZrO2 and HfO2 are very small, and the equivalent valence and almost equivalent ionic radii of Zr⁺ and Hf⁺ cations. Fig. 4 shows HfO2, HfZrOx and ZrO2 k value comparison which were extracted from EOT vs. ph ysical thickness plot. ZrO₂ addition on HfO 2 can increase k value. As in Fig. 5, the XP spectra of Si2p of the sample for HfO₂ and dif ferent ZrO₂ position in HfZrO ₂. ZrSiO_x silicate was identified. Bottom ZrO_2 in HfO ₂ shows higher ZrSiO _x signal. Fig. 6 shows TDDB lifetime of HfZrO_x gate stack as a function of V_g. HfZrO_x gate stack device lifetime is longer than HfO₂ device and better Weibull slop. In Fig. 7, gate stack d epth profile for dif ferent ZrO₂ position of HfZrOx/SiO2 gate stack obtained from angle resolved x-ray photoelectron spectroscopy (AR-XPS). The position of the Zr3d peak in the profiles was found to b e accurately reproduced. Greater accuracy in this region would be expected if a larger number of data points ar e used. Fig. 8 shows ZrO₂ position effect for HfZrO_x gate stack MOSCAP under GL process flow. For both of n/pMOSCAP HfZrOx gate stack, when ZrO 2 addition position in HfO₂ is higher, the device leakage current is lower. Fig. 9 shows GF vs. GL process flow with different ZrO₂ position for MOSCAP device comparison. Fig. 10 shows samples A~E nMOSCAP characteristics comparison between different ZrO₂ position in HfO₂ gate stack with top La₂O₃ capping layer under GF flow. Compared to HfO₂, the higher Jg was observed for HfZrOx samples (B~E). This is due to smaller band gap (Fig. 2(a)) and lower conduction band offset for HfZrO_x than that of HfO₂. Sample B shows better EOT scaling, Sample E shows worse $J_{\rm g}$ and larger $V_{\rm fb}$ shift to band edge for EWF tuning. In Fig. 11(a), ZrO₂ position effect for HfZrO_x gate stack nMOSCAP device under GF process with top La2O3 capping layer. The MOSCAP C-V shows larger V_{fb} shift and higher J_g (in Fig. 11(b)) for ZrO₂ position on (top+bottom) of HfO2 layer. The ZrO 2-HfO2-ZrO2 gate stack may enhance top and bottom unstable interface formation with metal gate and SiO₂ layer than HfO₂. In Fig. 12, ZrO₂ position effect for HfZrOx gate stack nMOSCAP device under GF process with different La₂O₃ capping layer position EOT-V_{fb} plots were compared. The ZrO₂ position effect for bottom La₂O₃ cap layer device is more significant than top La₂O₃. Fig. 13 shows EOT dependence of (a) V_{fb} and (b) J_g for HfZrO₂ nMOSCAP with changing Zr% in high-k film for GL process. Zr% increased can shift V_{fb} to band edge and increase J_g . In Fig. 14, Schematic of the ZrO_2 position impact for HfZrOx MOSCAP on GL. The V fb is dominated by Metal/High-k different interface dipole and the J_g is dominated by HK/IL interface ZrSiO_x formation (as s how in Fig. 5). The decomposition of ZrO₂ are unstable on a thin SiO₂ layer during annealing at 900°C. ZrO₂ position to SiO₂ interface layer can impact the silicate-like compound formation, then increase device leakage current.

4. Conclusions

Compared to the difference of changing ZrO_2 within $HfZrO_x$ dielectric showed: (1) For GF process, the ZrO_2 position effect on V_{fb} for bottom La_2O_3 cap layer device is more significant than device with top La_2O_3 . (2) For GL pro cess, the Zr% and ZrO_2 position impact for $HfZrO_x$ MOSCAP shows the V _{fb} is dominated by Metal/High-k different interface dipole and the J_g is dom inated by HK/IL interface $ZrSiO_x$ formation.

Acknowledgements

This work was supported by the National Science Council (NSC) of Taiwan, Republic of China, under contract No NSC 95-2215-E-006-014 and NSC 96-2221-E-006-081-MY2.

References

- [1] P. Sivasubramani, et al, Tech VLSI Symp. p68 (2007)
- [2] H. Y. Yu, et al., Tech. VLSI Symp. p18 (2007)
- [3] V. Narayanan, et al., Tech. VLSI Symp. 22.2 (2006)
- [4] R. I. Hegde, et al., J. Appl. Phys. 101, 074113 (2007)
- [5] D. Y. Cho, et al., Phys. Rev. B 82. p094104 (2010)
- [6] J. K. Schaeffer, et al, IEDM p287 (2004)

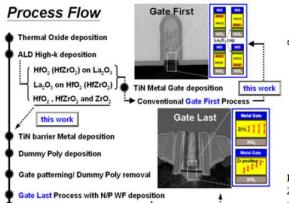


Fig. 1 Gate First (GF) and Gate Last (GL) fabrication process of high-k gate stack MOSCAP in this work.

Si2p

ZrSiO.

106

100 102 104

Binding Energy (eV)

Fig. 5 XP spectra of Si2p of the

sample for HfO2 and different ZrO2

position in $HfZrO_2$. $ZrSiO_x$ silicate

PHOTOELECTRON INTENSIT

96 98

was identified.

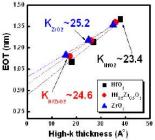


Fig. 4 HfO_2 , $HfZrO_x$ and ZrO_2 k value comparison which were extracted which were extracted from EOT vs. High-k physical thickness plot.

Gate Last Process with Hf(Zr)O, Gate Dielectric

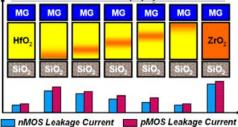


Fig. 8 The ZrO_2 position effect for $HfZrO_x$ gate stack n/pMOSCAP J_g comparison under GL process flow.

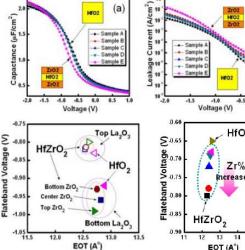
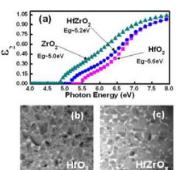
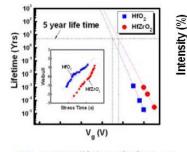
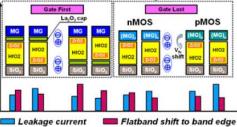
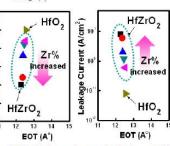



Fig. 12 ZrO_2 position effect for HfZrO_x gate stack nMOSCAP device under GF process with different La₂O₃ capping layer position EOT- V_{fb} plots was compared.

Fig. 2 (a) Band gap (E_g) decreased when ZrO_2 addition with HfO_2 . Preliminary result of Plan-View TEM for (b) HfO_2 and (c) $HfZrO_x$, the $HfZrO_x$ grain size shows smaller than HfO_2


Fig. 6 TDDB lifetime of $HfZrO_x$ gat stack as a function of V_g . $HfZrO_x$ lifetime is longer than HfO_2 device and better Weibull slop.

GF v.s GL MOSCAP with Hf(Zr)O, Gate Dielectric

Fig. 9 GF v.s GL process flow with different ZrO_2 position in HfO₂ for MOSCAP device comparison.

Fig. 11 (left) ZrO_2 position effect for $HfZrO_x$ gate stack nMOSCAP device under GF process with top La₂O₃ capping layer. The nMOSCAP characteristics (a) C-V shows larger V_{fb} shift and higher J_g (as shown in (b)) for ZrO_2 -HfO₂-ZrO₂ gate stack sample compared with HfO₂

(b)

Fig. 13 EOT dependence of (a) $\rm V_{fb}$ and (b) $\rm J_g$ for HfZrO_1nMOSCAP with changing Zr% in high-k film for GL process. Zr% increased can shift $\rm V_{fb}$ to band edge and increase J_g.

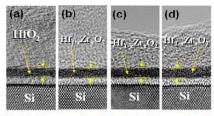


Fig. 3 Cross section HR-TEM image of (a) HfO_2/SiO_2 and $HfZrO_x/SiO_2$ with different ZrO_2 position (b) Top (c) Center (d) Bottom after annealing at 1050°C. A uniform contrast indicates a compositional uniformity

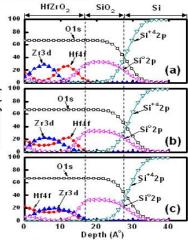


Fig. 7 Maximum Entropy entropy depth profile for different ZrO_2 position of HfZrO_x/SiO₂ Gate Stack obtained from AR-XPS (a) Top ZrO_2 (b) Center ZrO_2 (c) Bottom ZrO_2 .

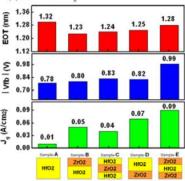


Fig. 10 nMOSCAP device characteristics comparison between different ZrO_2 position in HfO₂ gate stack under GF process with top La₂O₃ capping layer.

Zr position impact for HfZrOx MOSCAP Characterization

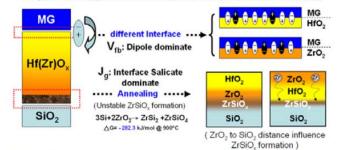


Fig. 14 Schematic of the ZrO_2 position impact for $HfZrO_x$ MOSCAP on GL. The V_{fb} is dominated by Metal/High-k different interface dipole and the J_g is dominated by HK/IL interface $ZrSiO_x$ formation. The decomposition of ZrO_2 are unstable on a thin SiO₂ layer during annealing at 900°C. ZrO_2 position to SiO₂ interface layer can impact the silicate-like compound formation , then increase device leakage current.