Doping Effects of Liquid Crystalline Phthalocyanine in Bulk Heterojunction Polymer Solar Cells

Testuya Masuda1, Tetsuro Hori1, Naoki Fukuoka1, Yasuo Miyake1,2, Dao Quang Duy1, Takeshi Hayashi1, Toshiya Kamikado1, Hiroyuki Yoshida1, Akihiko Fujii1, Yo Shimizu2, Masanori Ozaki1

1 Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
Phone: +81-6-6879-4837 E-mail: tmasuda@opal.eei.eng.osaka-u.ac.jp
2 Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

1. Introduction
Poly(3-hexylthiophene) (P3HT) is known as one of the conventional active layer materials used in organic thin-film solar cells. However, the photosorption of P3HT is limited to the visible region at wavelengths shorter than 600 nm. Therefore, the improvement of long-wavelength sensitivity is important.

Recently, we have demonstrated high hole and electron drift mobilities of 1.4 cm²/Vs and 0.5 cm²/Vs, respectively, in the crystalline phase of mesogenic non-peripheral octa(hexylphthalocyanine (C6PhC2), shown in Fig. 1[1]. C6PhC2 exhibits high absorption in the wavelength range of 500–850 nm corresponding to the Q-band, and C6PhC2 forms a hexagonal columnar structure owing to its high self-organization and π-stacking properties. We also reported a simple organic solar cell with a bulk heterojunction of C6PhC2 and fullerene derivative (PCBM) that was fabricated by the spin-coating method and demonstrated its high energy conversion efficiency[2,3].

In this study, we report on the improvement of long-wavelength sensitivity in P3HT:PCBM bulk heterojunction solar cells by doping C6PhC2 and discuss their photovoltaic properties by taking the microphase separation and photoinduced charge separation into consideration.

(PEDOT:PSS) was spin-coated onto an indium-tin-oxide (ITO)-coated quartz substrate, and dried in an oven under atmospheric conditions. P3HT, C6PhC2, PCBM were dissolved in chloroform. The P3HT:C6PhC2:PCBM mixed solution was spin-coated onto the PEDOT:PSS layer in a glove box filled with argon gas.

Lithium fluoride (LiF) and aluminum (Al) layers as a counter electrode to the ITO were deposited onto the composite layer through shadow masks by thermal evaporation.

3. Results and Discussion
Figure 2 shows the external quantum efficiency (EQE) spectra of the solar cells with P3HT:PCBM and P3HT:C6PhC2:PCBM active layers, the composition ratios of which were 1:1 and 10:3:10, respectively. In the solar cell without C6PhC2, although a high EQE of 74% was obtained at the wavelength of 540 nm, corresponding to the absorption peak of P3HT, a low EQE was obtained at wavelengths longer than 650 nm because of the low absorbance of the active layer. On the other hand, in the solar cell with C6PhC2, a high EQE of 46% at 730 nm originating from the absorption of C6PhC2 was obtained as well as a high EQE of 66% at 540 nm. That is, the photosensitivity of the bulk heterojunction organic solar cell with the P3HT:PCBM active layer was improved in the near-infrared region.

2. Experimental Details
The fabrication of solar cells in this study was carried out in the following manner. A hole transport layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was spin-coated onto an indium-tin-oxide (ITO)-coated quartz substrate, and dried in an oven under atmospheric conditions. P3HT, C6PhC2, PCBM were dissolved in chloroform. The P3HT:C6PhC2:PCBM mixed solution was spin-coated onto the PEDOT:PSS layer in a glove box filled with argon gas.

Lithium fluoride (LiF) and aluminum (Al) layers as a counter electrode to the ITO were deposited onto the composite layer through shadow masks by thermal evaporation.

3. Results and Discussion
Figure 2 shows the external quantum efficiency (EQE) spectra of the solar cells with P3HT:PCBM and P3HT:C6PhC2:PCBM active layers, the composition ratios of which were 1:1 and 10:3:10, respectively. In the solar cell without C6PhC2, although a high EQE of 74% was obtained at the wavelength of 540 nm, corresponding to the absorption peak of P3HT, a low EQE was obtained at wavelengths longer than 650 nm because of the low absorbance of the active layer. On the other hand, in the solar cell with C6PhC2, a high EQE of 46% at 730 nm originating from the absorption of C6PhC2 was obtained as well as a high EQE of 66% at 540 nm. That is, the photosensitivity of the bulk heterojunction organic solar cell with the P3HT:PCBM active layer was improved in the near-infrared region.

2. Experimental Details
The fabrication of solar cells in this study was carried out in the following manner. A hole transport layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was spin-coated onto an indium-tin-oxide (ITO)-coated quartz substrate, and dried in an oven under atmospheric conditions. P3HT, C6PhC2, PCBM were dissolved in chloroform. The P3HT:C6PhC2:PCBM mixed solution was spin-coated onto the PEDOT:PSS layer in a glove box filled with argon gas.

Lithium fluoride (LiF) and aluminum (Al) layers as a counter electrode to the ITO were deposited onto the composite layer through shadow masks by thermal evaporation.

3. Results and Discussion
Figure 2 shows the external quantum efficiency (EQE) spectra of the solar cells with P3HT:PCBM and P3HT:C6PhC2:PCBM active layers, the composition ratios of which were 1:1 and 10:3:10, respectively. In the solar cell without C6PhC2, although a high EQE of 74% was obtained at the wavelength of 540 nm, corresponding to the absorption peak of P3HT, a low EQE was obtained at wavelengths longer than 650 nm because of the low absorbance of the active layer. On the other hand, in the solar cell with C6PhC2, a high EQE of 46% at 730 nm originating from the absorption of C6PhC2 was obtained as well as a high EQE of 66% at 540 nm. That is, the photosensitivity of the bulk heterojunction organic solar cell with the P3HT:PCBM active layer was improved in the near-infrared region.
Figure 3 shows typical current-voltage characteristics of the solar cells with active layers of P3HT:PCBM and P3HT:C6PcH$_2$:PCBM, the composition ratios of which were 1:1 and 10:3:10, respectively, under AM1.5G (100 mW/cm2) solar-illuminated conditions. Open-circuit voltage (V_{oc}) was mostly unchanged, and Fill Factor (FF) decreased. On the other hand, short-circuit current density (I_{sc}) was 1.4 times higher than in the case without C6PcH$_2$. The long-wavelength sensitivity in the EQE spectrum, as shown in Fig. 2, was improved by doping C6PcH$_2$, resulting in the enhancement of I_{sc}. The energy conversion efficiency of the solar cell without C6PcH$_2$ was 2.3% with V_{oc} of 0.56 V, I_{sc} of 8.6 mA/cm2, and FF of 0.48, and that of the solar cell containing C6PcH$_2$ was improved to 3.0% with V_{oc} of 0.56 V, I_{sc} of 12.1 mA/cm2 and FF of 0.44$^{[4]}$.

Figure 4 shows the X-ray diffraction (XRD) patterns of bulk heterojunction active layers of P3HT:PCBM and P3HT:C6PcH$_2$:PCBM, the composition ratios of which were 1:1 and 10:3:10, respectively. The diffraction peak around 2θ = 5.4$^\circ$ corresponds to the distance of the main chain of P3HT (16.3 Å), and that around 2θ = 4.9$^\circ$ corresponds to the distance of the hexagonal column of C6PcH$_2$ (18.0 Å). At the P3HT:C6PcH$_2$:PCBM, the diffraction of C6PcH$_2$ appeared, although the diffraction intensity of P3HT was maintained. Therefore, it is considered that both P3HT and C6PcH$_2$ aggregate to form mutual microphase separation and that highly ordered P3HT domains and hexagonal columnar structures of C6PcH$_2$ coexist in the P3HT:C6PcH$_2$:PCBM bulk heterojunction thin film.

4. Conclusions

We reported on the improvement of the long-wavelength sensitivity in P3HT:PCBM bulk heterojunction organic thin-film solar cells by the doping of C6PcH$_2$, which is a liquid crystalline phthalocyanine derivative exhibiting near-infrared absorption, into the P3HT:PCBM bulk heterojunction active layer. At the composition ratio of P3HT:C6PcH$_2$:PCBM = 10:3:10, the photosensitivity in the wavelength region from 650 to 800 nm was improved, and I_{sc} was enhanced from 8.6 to 12.1 mA/cm2. As a result, the energy conversion efficiency was improved from 2.3 to 3.0%. It was found that the bulk heterojunction was composed of both highly ordered P3HT domains and hexagonal columnar structures of C6PcH$_2$ at the P3HT:C6PcH$_2$ composition ratio of 10:3 and that P3HT and C6PcH$_2$ underwent mutual microphase separation in the active layer. We discussed the mechanisms of photoconversion in the bulk heterojunction organic thin-film solar cell based on the P3HT:C6PcH$_2$:PCBM active layer.

References

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by the Global Center of Excellence (Global COE) Program “Center for Electronic Devices Innovation” at Osaka University.