Carbon Nanotube Network Conjugated by Nanoparticles with Defined Nanometer-Scaled Gaps

Mime Kobayashi1,2,3, Shinya Kumagai1,4, Kiyotaka Shiba1,3, Yukiharu Uraoka2,3 and Ichiro Yamashita2,3

1 The Cancer Institute of the Japanese Foundation for Cancer Research
3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
Phone: +81-3-3520-0111 ext.5632 Fax: +81-3-3571-0461 E-mail: mime.kobayashi@jfcr.or.jp
2 Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
3 CREST, Japan Science and Technology Agency
4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
4 Toyota Technological Institute
2-12-1 Hisakata, Tenpaku-ku, Nagoya 468-8511, Japan

1. Introduction
Carbon nanotubes (CNTs) have been attracting broad interest in many research fields including molecular sensing and nanometer-scaled electronics because of their unique physical and electronic properties. Here we report a nanostructure fabrication process in aqueous solution using a cage-shaped protein. Previously, a peptide named NHBP-1 (DYFSPYYEQLF) has been identified as an aptamer with an affinity for carbonaceous materials [1]. Utilizing the aptamer, semiconductor nanoparticles (NPs) inside the proteins were attached to CNTs with nanometer-scaled gaps, which could function as tunneling gaps [2].

Changing the size of a protein and the materials mineralized inside, NPs with different sizes and properties can be incorporated in the nanostructure [3]. Metallic or semiconductor materials inside the protein can act as charge storage nodes, and the nanostructure network is expected to show intriguing properties in electric conductivity. We report here our attempt to characterize the electronic properties of the structure.

2. Materials and Methods

Protein purification
An engineered protein that has the NHBP-1 peptide fused to the N-terminus of the Listeria innocua Dps (LiDps) protein was expressed in E. coli [2]. The cells were lysed and the supernatant was subjected to thermal denaturation at 75°C for 20 min. After centrifugation at 6,000 g for 10 min, the supernatant was subjected to salt dialysis with a final concentration of 0.5 M NaCl. After centrifugation at 6,000 g for 10 min, the precipitate was suspended in 50 mM Tris-HCl (pH 8.0). The salt dialysis was repeated 2 times, and protein purity was confirmed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transmission electron microscopy (TEM: JEM-2200FS, JEOL, Tokyo) analysis.

Cobalt oxide mineralization
The NHBP-LiDps protein (0.1 mg mL⁻¹) was dissolved in 100 mM HEPES-NaOH (pH 8.2) and incubated in the presence of 0.5 mM (NH₄)₂Co(SO₄)₂ and 1 mM H₂O₂ at 50°C for 15 min. The reaction solution was centrifuged at 30,000 rpm on a 45Ti rotor (Beckman), and the supernatant was applied to a filtration column (NMWC: 30K, Amicon Ultra) and centrifuged at 3,000 rpm at 4°C, then washed by adding H₂O. The protein was further purified through S-300 XK26x100 column (TOSOH), and applied on top of a layer of 15%, 25% and 50% sucrose. After centrifugation at 30,000 rpm on an SW32Ti rotor (Beckman), fractions with high 400 nm/280nm absorbance ratio were collected. TEM and energy dispersive X-ray spectroscopy (EDS: JED-2200 analyzer, JEOL, Tokyo) confirmed the existence of Co oxide cores inside the proteins.

CNT/Co structure Formation
To construct a nanostructure in which the cage-shaped protein surround single-walled carbon nanotubes (SWNTs), 15 mg of SWNTs (Aldrich 519308) were mixed in 50 mL of water in a glass vial. Next, the protein was mixed with the SWNTs in H₂O in a final concentration of 0.3 mg mL⁻¹. The final concentration of SWNTs is roughly 0.2 mg mL⁻¹. Ultrasonication (Sonifer 250; Branson Ultrasonic Corp., Danbury, CT, USA) was applied for 5 min and the solution was centrifuged at 15,000 rpm for 10 min at 4°C.
3. Results and discussion

Utilizing an aptamer with an affinity for carbonaceous materials, a structure in which SWNTs are surrounded by cage-shaped proteins could be fabricated (Fig. 1). Various metals or semiconducting materials can be incorporated inside the protein cages, resulting in NPs separated from SWNTs by nanometer gaps. After casting solution with the structure onto a pair of Au electrode (Fig. 2), current-voltage characteristics were measured at ambient conditions using metal probes connected to a semiconductor parameter analyzer (Agilent Technologies, 4156C)(Fig. 2c, 2d).

When bias voltage was swept from 0 V to 2.5 V, current increase was observed (Fig. 2c). When the polarity of bias voltage was changed and swept from 0 V to -2.5 V, the current increased in the opposite direction (Fig. 2d). The electric current suppression observed at low bias voltage may have been caused by the cobalt oxide NPs separated by nanometer gaps from the SWNTs. However, further electronic characterization is necessary to reveal the true nature of the SWNT-protein complex.

4. Conclusions

Utilizing a cage-shaped protein, an electronic device component of SWNTs surrounded by NPs with nanometer gaps could be fabricated. The formed complex can bridge Au electrodes fabricated on a silicon surface. Although detailed characterization of electronic properties of this complex is necessary, tunneling junctions between SWNTs and some of the NPs surrounding them may have been formed. Novel memory effects may emerge as a result of multiple electron pathways in the complex. Combining with other nanometer-scaled structures [4,5], the SWNT-protein complex could be utilized for electronic devices with unprecedented characteristics.

Acknowledgements

We thank N. Okamoto, M. Yamane, S. Fujita and Drs. B. Zheng and M. Uenuma for technical assistance. We gratefully acknowledge the support of this work by Human Frontier Science Program (RGP61/2007), Grant-in-Aid for Scientific Research on Innovative Areas “Emergence in Chemistry” (No. 21111517) from JSPS.

References