MIM Capacitors with High Capacitance Density and Low Quadratic Voltage Coefficient by Employing Crystalline-TiO₂/SiO₂ Stacked Dielectric

Chia-Chun Lin, Wei-Yuan Ou, Jia-Rong Wu, Min-Lin Wu, Lun-Lun Chen, and Yung-Hsien Wu*

Department of Engineering and System Science, National Tsing-Hua University, 300, Hsinchu, Taiwan Phone:+886-3-516-2248 Email: <u>yunhwu@mx.nthu.edu.tw</u>

I. Introduction

Besides a high capacitance density, for high performance metal-insulator-metal (MIM) capacitors, low quadratic voltage coefficient of capacitance (VCC- α or simply α) is also indispensable. According to ITRS, MIM capacitors with a capacitance density of 10 fF/ μ m² and α value less than 100 ppm/ V^2 are required by 2016. With the advent of high-k dielectrics, although MIM capacitors possessing capacitance density higher than 25 fF/ μm^2 have been widely explored [1-3], capacitors that concurrently meet the requirement of capacitance density and α value set in ITRS have been rarely reported. Increasing the dielectric thickness is a direct avenue to obtain the desirable α , inevitably, it comes at the price of capacitance density degradation to be less than 10 fF/ μ m² [4-5]. Recently, a stack structure that comprises a HfO₂ film (positive α) and a thin SiO₂ layer (negative α) has ushered in a new approach to achieve low α value without compromising its capacitance density by using the "canceling effect"[6]. Based on this concept, Sm₂O₃/SiO₂ [7] and even HfTiO/Y₂O₃ [8] stacked dielectric have been investigated and show good performance. To further enhance the capacitance density while keeping low α value, in this work, a crystalline-TiO₂/SiO₂ stack was adopted, and a capacitance density of 11.9 fF/ $\!\mu m^2$ with α value of 90 ppm/ V^2 is achieved.

II. Experiment

Prior to the fabrication of MIM capacitors, 500 nm SiO₂ was grown on Si wafers for better isolation. Then a TaN/Ta bi-layer of 50/150 nm was deposited as the bottom electrode. A TiO₂ film of 14.0 nm was deposited by sputter followed by O₂ furnace annealing at 380 °C for 10 min to strengthen its quality by decreasing oxygen vacancies. Thereafter a rapid thermal annealing (RTA) in N₂ at 500 °C for 30 sec was performed on some samples to induce phase transition from amorphous to crystalline phase for the TiO₂ film, and this phase transition leads to κ value enhancement from 31 to 111 [2]. Then a thin SiO₂ layer of 2.5 or 7.0 nm was deposited on TiO₂ film by plasma enhanced chemical vapor deposition (PECVD) to study how SiO₂ thickness modulates the α value. Finally, Al of 100 nm was deposited and patterned as the top electrode. **Fig. 1** shows the structure of MIM capacitors and process flow.

III. Results and Discussion

Fig. 2 shows the capacitance-voltage (C-V) curves for MIM capacitors without RTA treatment. As expected, as SiO₂ layer increases from 2.5 to 7.0 nm, the zero-biased capacitance decreases from 7.7 to 3.9 fF/µm². Shown in **Fig. 3** are normalized C-V curves and the corresponding α values for these samples. α value of 83 ppm/V² can be obtained for samples with 7.7 fF/µm² and this performance is comparable to that reported in Sm₂O₃/SiO₂ stack [7]. The change of α polarity from positive to negative sign for samples with thicker SiO₂ suggests that the effect of negative α becomes more prominent. The impact of RTA treatment on C-V characteristics and α value are respectively demonstrated in **Fig. 4** and **Fig. 5**. Under the same physical thickness, samples with additional RTA correspond to a larger capacitance density which is due to the greatly enhanced κ value. As the SiO₂ thickness increases, α has a trend similar to those without RTA. For RTA-processed samples with 2.5-nm SiO₂, a capacitance density as high as 11.9 fF/µm² can be obtained while keeping low α level of 90 ppm/V². Worth to be mentioned is that, because of low α and high linear voltage coefficient of capacitance (VCC- β) which can be alleviated by circuit technology, normalized C-V curve is unlike a conventional parabolic curve. This capacitance along with α value well exceeds the device requirement in 2016 set by ITRS. Even though the crystal-line TiO₂ has extremely high α value [2], the excellent α value for RTA-processed samples can be explained by examining the equation of effective α for a stacked dielectric.

Effective $\alpha = \delta_1^3 \times \alpha_1 + \delta_2^3 \times \alpha_2$;

 $\delta_i \equiv EOT_i / EOT$ where i denotes respective dielectric.

Since the crystalline TiO₂ in samples with RTA contributes very little to equivalent oxide thickness (EOT), δ^3 with extremely low value is obtained and therefore the effect of high α value for the crystalline TiO₂ can be greatly diluted. In addition, the canceling effect provided by SiO₂ also plays the critical role in accomplishing such an excellent device performance. Fig. 6 shows the dependence of normalized capacitance on measurement temperature and temperature coefficient of capacitance (TCC) of 124 ppm/°C is observed for RTA-processed samples with 2.4 nm SiO₂. Compared to other dielectrics, as shown in Fig. 7, RTA-processed samples with SiO₂ demonstrates the smallest α value in the capacitance density range of interest $(10-12 \text{ fF}/\mu\text{m}^2)$ for 2016 ITRS requirement and proves the competence of crystalline-TiO₂/SiO₂ stack as the promising dielectric for advanced MIM capacitors. The current conduction mechanism for samples with and without RTA is investigated by plotting the ln(J) versus $E^{1/2}$ curves shown in Fig. 8 where J and E respectively denote current density and electric field. At low field, the conduction is extracted to follow the Schottky emission model. Table I summarizes the major device parameters for MIM capacitors with various electrodes and dielectrics [4, 6-8] and a crystalline-TiO₂/SiO₂ stack shows the most promising characteristics. Note that further improvement is possible by employing a post-RTA NH₃ plasma treatment to well passivate the grain boundary induced leakage paths [9-10] and replacing the low-work function electrode of Al with a higher one to increase the barrier height for carrier injection, both of which are helpful to suppress leakage current.

IV. Conclusion

A crystalline-TiO₂ film is found to have a high κ value of 118. By integrating it with a thin SiO₂ layer which provides the canceling effect of α value as the stacked dielectric, MIM capacitors reveal superior device characteristics to other dielectrics in terms of a capacitance density of 11.9 fF/µm² and low α value of 90 ppm/V². This stacked dielectric holds great potential to be used in precision analog circuit application beyond 2016.

Acknowledgement

This work was supported by the National Science Council of Taiwan under Contracts NSC 99-2221-E-007-107.

References

[1] Y. H. Wu et al., APL, 98, 013506, 2011. [2] Y. H. Wu et al., SSDM, 2010, 231. [3]. Y. H. Wu et al., APL, 95, 113502, 2009. [4] D. Brassard et al., EDL, 28, 261, 2007. [5] Y. H. Jeong et al., EDL, 28, 17, 2007. [6] S. J. Kim et al., Symp. VLSI Tech., 2004, 218. [7] J. J. Yang et al., EDL, 30, 460, 2009. [8] B. Y. Tsui et al., EDL, 31, 875, 2010. [9] Y. H. Wu et al., EDL, 30, 1290, 2009. [10] Y. H. Wu et al., EDL, 31, 1014, 2010.

1000

Fig. 1 Structure and process flow of MIM capacitors.

14

Fig. 2 C-V characteristics for SiO₂/TiO₂ MIM capacitors without RTA treatment.

Fig. 5 \triangle C/C₀ vs. voltage for SiO₂/TiO₂ MIM capacitors with RTA treatment where C_0 is the zero-biased capacitance.

Fig. 8 ln(J) vs. $E^{1/2}$ for SiO₂/TiO₂ MIM capacitors with and without RTA treatment.

-1.5

SIO,/TIO, : 7.0 nm/14.0 nm

SiO,/TiO, : 2.5 nm/14.0 nm

-1.0

-0.5

Without RTA Treatment

α=-322

-2.0

-2.5

Fig. 6 Temperature-dependent normalized capacitance for MIM capacitors with or without RTA treatment.

Fig. 4 C-V characteristics for SiO₂/TiO₂ MIM capacitors with RTA treatment.

Fig. 7 VCC- α vs. capacitance density for MIM capacitors with various high-ĸ dielectrics.

Table I. Comparison of MIM capacitors with various dielectrics, top electrodes and process temperatures.

	BaSm ₂ Ti ₄ O ₁₂ [4]	HfO ₂ /SiO ₂ [6]	Sm ₂ O ₃ /SiO ₂ [7]	HfTiO/Y ₂ O ₃ [8]	SiO ₂ /TiO ₂ (Without RTA)	SiO ₂ /TiO ₂ (500 °C RTA)
Process Temp. (°C)	300	420	420	400	380	500
Top Electrode	Pt	TaN	TaN	Pt	Al	Al
Work-function (eV)	5.6	4.6	4.6	5.6	4.3	4.3
Capacitance Density (fF/µm ²)	9.9	6	7.3	11	7.7	11.9
VCC (ppm/V ²)	599	14	46	1222	83	90