The Integrated a-Si Gate Driver Circuit using Voltage Controlled Capacitance Modeling for HDTV/XGA

Sang-Kug Han¹, Jeong-Yeon Kim¹, Hoon Choi¹, Kyo-Ho Moon Choi¹, Young-Seok Choi¹, Kwang-Mook Park² and Sie-Young Choi²

¹ Panel Technology Department, LG Display Company Ltd.,
1007, Deogeun-ri Wollong-myon, Paju-si, Gyeonggi-do, 413-811, Korea
Phone: +82-31-933-0079 E-mail: hsg711@lgdisplay.com

² Department of Electronics Engineering, Kyungpook National University,
Dae-gu, 702-701, Korea

1. Introduction

Hydrogenated amorphous silicon (a-Si:H) thin-film transistors(TFTs) are the most widely used switching devices in active matrix liquid crystal displays. AMLCDs have been applied to many information tools such as personal computers, PDAs, and picture displays. In recent years, a-Si TFT gate driver integration has become indispensable in TFT-LCD business because of the reduction in fabrication cost by eliminating external gate driver ICs and the advantage in realizing slim displays.

An a-Si:H integrated gate driver for TFT-LCD was operated using bootstrapping technology owing to small mobility in the range of 0.3 to 0.6 cm²V⁻¹S⁻¹. In design step of an a-Si:H integrated gate driver, it’s necessary to define some design factors that can affect bootstrapping characteristic. This is related with capacitance characteristics of integrated transistors. So, we focused on TFT devices, modeling, and the a-Si:H integrated gate driver circuit using the voltage controlled capacitance modeling method. From understanding the relation between capacitance characteristics of a-Si:H integrated transistors and gate output signal, it’s possible to design an a-Si:H integrated gate driver for high resolution and driving frequency of TFT-LCD.

2. General Instructions

An a-Si:H integrated gate driver circuit for TFT-LCD is described, especially focusing on the charging time and discharging time for HDTV/XGA. These are imperative for robust circuit design and the quality of picture. In design step of an a-Si:H integrated gate driver, it’s necessary to define gate falling time exactly.

In this paper, we investigated the capacitance characteristics and modeling using the new extracted method. The relation between capacitance characteristics of a-Si:H integrated transistors and gate output signal is analyzed using UTMOST and SMARTSPICE simulator. The accuracy of the simulated gate output signal using voltage controlled capacitance modeling is verified with measured data.

Figure 1 illustrates the equivalent circuit models of the conventional and the proposed structures. The voltage-controlled capacitance (VCCAP) is used for compensating the capacitance characteristics of inverted staggered a-Si:H TFT.[1]-[2]

Figure 2 shows the back channel etched structure, the measured and simulated C-V characteristics in both the electron accumulation and depletion range of the gate voltage of fabricated a-Si:H TFT.

![Fig.1](image1.png)

![Fig.2](image2.png)
The gate drivers essentially drive all the rows on the backplane one at a time for a frame time.[3] Each stage consists of shift register cells and buffer transistors. (T6 and T7) Figure 3 shows T6 was operated for pulling up and down the output logic. T7 acts to hold the output to a logic low. The capacitance characteristics of all transistors are very important design issue. Because these affect Q node and the gate output due to bootstrap effect.

![Circuit diagram](image)

Fig.3. Circuit showing the shift register cell in the gate driver (a) Conventional shift register (b) Proposed shift register.

Table 1 Comparing a predicting rising and falling time with measure results

<table>
<thead>
<tr>
<th>Items</th>
<th>Rising Time</th>
<th>Falling Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meas.</td>
<td>2.360μs</td>
<td>2.040μs</td>
</tr>
<tr>
<td>Sim. Proposed</td>
<td>2.249μs(95.3%)</td>
<td>2.212μs (92%)</td>
</tr>
<tr>
<td>Sim. Conventional</td>
<td>2.014μs(85.3%)</td>
<td>1.726μs (85%)</td>
</tr>
</tbody>
</table>

3. Conclusions

For applying a-Si:H integrated gate drive to a large size and high frequency LCD TV, it’s important to understand the property of integrated gate driver. With the reason, it’s necessary to develop a method or tool to predict the gate output signal exactly. In our study, the a-Si:H gate driver using voltage controlled capacitance modeling increased the accuracy of rising (95.3 %) and falling time (92%).

4. Acknowledgements

Our thanks to members of Development and Process Engineering for developing a-Si:H integrated gate driver.

References

![Graphs](image)

Fig.4 Measured and simulated results of the proposed and conventional gate driver circuits. (a) Measured results showing rising and falling time. (b) Comparison of charging and discharging time between the proposed and conventional gate driver circuit.