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1. Introduction

Modulators are the devices widely studied in recent Si
photonics. Electro-absorption (EA) modulation based on
the Franz-Keldysh effect of Ge [1] has attracted much at-
tention, comparing with electro-refractive Si modulation [2]
[3]. Franz-Keldysh Ge EA modulators have recently been
reported and demonstrated micrometer footprints, low
power consumption (10 — 100 fJ per bit) and operation
wavelength around 1.55 um [4][5]. The challenge is its
narrow operation wavelength window ~0.015 um, leading
to the requirements of several SiGe-based modulators
working at different wavelength to cover the whole C+L
band (1.53 — 1.62 pum). One solution for this issue is using
Si,Gey alloys for the modulation, which has indeed been
demonstrated in [4]. However, with increasing Si composi-
tion, the indirect characteristic of this alloy deteriorates the
Franz-Keldysh effect of the absorption coefficient induced
by the direct gap. Moreover, a complex processing leads
higher cost.

We have proposed a new approach to tune the bandgap of
Ge with various strains to cover the whole range of C+L
band [6]. Biaxial strain due to the thermal expansion mis-
match shifted the absorption edge of Ge epilayer on Si from
1.55 um to 1.605 um [7]. It suggests that we can use strain
to control the bandgap of Ge, therefore, to tune the opera-
tion wavelength of Ge EA modulators. In this paper, we
have demonstrated the shift of absorption edge by strain,
and also the Franz-Keldysh effect in intentionally strained
Ge as a proof of strain-tuning concept.

2. Experimental procedures

We have employed SiN, as stressors and fabricated free
space Ge photodetectors. 400 nm-thick Ge epilayer was
grown on a 4 inch p*-Si(100) substrate by ultra high vacu-
um chemical vapor deposition (UHV-CVD). Phosphorus
donors were implanted to make vertical p-i-n diode struc-
tures. The phosphorus peak concentration was approxi-
mately 10 c¢cm™. Finally, 500 nm-thick SiN, films were
deposited and patterned to make stressor stripes on Ge
photodetectors.
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Figure 1. Cross section view of Ge detectors with stressors
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We measured the induced strain in Ge by microscopic
Raman scattering spectroscopy (u-Raman), and the photo-
current and responsivity spectra of Ge photodetectors on Si.

3. Strain induced absorption edge shift

The stress profile measured by p-Raman showed that 200
MPa of tensile stress is applied into the Ge layer. The k-p
theory predicted the shift of the absorption edge of Ge with
the stressor by an amount of 0.02 um to the longer wave-
length. The responsivity spectra are shown in Figure 2. Our
free-space Ge photodetectors on Si with the SiN, stressors
have reproduced the predicted red-shift and covered the L
band edge (1.62 um).
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Figure 2. The responsivity spectra of free space Ge photodetectors

with and without stressors

4. Franz-Keldysh absorption change in strained Ge

Figure 3 shows typical photocurrent spectra of our Ge
photodetectors with the SiN, stressor under reverse biasing.
The change in spectra suggests that there is an elec-
tro-absorption effect here.

—3vVv
-0V
20f

Photocurrent (uA)

Wavelength (um)

Figure 3. The photocurrent spectra of free space Ge photodetec-
tors with SiN, stressors.
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To confirm whether it is due to the Franz-Keldysh effect
or not, we compare experiment data with theoretical calcu-
lations by the generalized Franz-Keldysh formalism [8].

First, we simulated electric field from the doping profile
shown in Figure 4(a) by a one-dimensional finite-difference
simulator (PC1D). As in Figure 4(a), 200 nm-thick phos-
phorus implanted region does not show any change of elec-
tric field upon external biasing, but very high electric field
in the thinner i-region. To keep this in mind, we calculated
the absorption coefficient from the photocurrent spectra,
and then obtained the figure of merit (FOM) Ao/a, where
Ao is the change in absorption coefficient with and without
applied bias, and a is the absorption coefficient when there
is no external bias. This FOM is very important for EA
modulators because Ac. and o represent extinction ratio and
insertion loss of EA modulators respectively. We should
point out that absorption coefficient only changes where
there is electric field, therefore the FOM should be cali-
brated as following:

Ao oo (@) -a@) b
j(obs)_ 20 . @.0

A_O{ (cal) = A_O{ (obs) x l ) 1.2)
a a t;

where t is the total thickness of Ge layer, t; is the thickness
of the i-region. Aa/a(obs) is the FOM calculated directly
from photocurrent spectra and Aa/o(cal) is the FOM after
calibration by equation (1.2).
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Figure 4. (a) The electric field distribution of Ge photodetectors
with stressors. (b) Ao/a as a function of electric field
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Figure 4(b) shows Aa/a(cal) as a function of electric field.
The theory reproduces the experiment data very well, con-
firming the Franz-Keldysh effect working in our Ge photo-
detectors.

5. Conclusions

We have demonstrated the strain-induced shift of absorp-
tion edge in Ge with the SiN, stressor, and absorp-
tion-modulation in term of the Franz-Keldysh effect using
intentionally strained Ge. These are proofs of strain-tuning
concept for Franz-Keldysh Ge EA modulators working in
C+L band. The EA modulator has various advantages such
as smaller footprint, lower power consumption, and higher
stability against temperature fluctuation, comparing with
Mach-Zehnder modulators and Si microring modulators.
The EA modulator will open up a new way to realize high
performance electronic-photonic integrated circuits.
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