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1. Introduction 
Recently, NAND flash memory has been widely used as a 

mass data storage device and the size of data has increased. 
In order to meet ever increasing market demand of storage 
capacity, aggressive efforts for scaling NAND flash devices 
have been made and the cell size in planar channel NAND 
flash memory has been scaled down to 15 nm node [1]. As 
the result of the scaling-down, NAND flash memory has 
been faced with various problems such as read disturbance, 
cell-to-cell interference, program saturation issue, and so on 
[2]-[4]. Among these problems, RTN which is caused by 
the capture/emission of an electron at a trap inside tunnel-
ing oxide becomes one of the critical issues, because in-
creasing bit-line (BL) current fluctuation (IBL) with scal-
ing-down of cell size can make an error during read opera-
tion and the memory unreliable. Especially, the trap which 
is responsible for RTN can be not only generated during 
fabrication process but also generated by cycling stress. 
However, no report has been made on the characterization 
of instability by RTN generated by the cycling stress. 
In a previous paper [5], a methodology to extract the 3-D 

position of trap generated by process was introduced. In 
this work, we investigate systematically RTN generated by 
process and cycling stress induced traps. 
2. Device Structure and Result 

In this work, we characterized NAND flash cell strings 
fabricated with 26 nm technology. It consists of sixty-four 
cells, two dummy cells, a drain select line (DSL) transistor 
and a source select line (SSL) transistor. The channel length 
and width are 26 nm and 20 nm, respectively.  

To check RTN generated by cycling stress induced trap, 
first, we measured the BL current (IBL) in time domain and 
normalized noise power spectral density	( / ). Here, IBL 
is 100 nA when bit-line voltage (VBL) and pass voltage 
(VPASS) are 0.8 and 6.5, respectively. Then we measured IBL 
and /  at same bias condition after 1000th and 2000th 

cycling. 
Fig. 1 (a) and (b) show IBL of a cell before cycling and 

after 2000th cycling, respectively, in the time domain. Be-
fore the cycling stress, RTN was not observed. After 2000th 
cycling stress, RTN was generated and IBL was ~70 nA. In 
another cell as shown in Fig. 1 (c), we can observe small 
RTN before cycling, which means the trap was generated 
during fabrication process. In this figure, relatively fast and 
small RTN (IBL = 4.5 nA) is observed. After cycling the 
cell by 2000th, slow and large RTN (IBL = 40 nA) is gen-
erated in the cell as shown in Fig. 1 (d). 

Fig. 2 (a) and (b) show /  corresponding to IBL 

fluctuations of two different devices: (a)-(b) and (c)-(d) in 
Fig. 1, respectively. In Fig. 2 (a), /  is increased sig-
nificantly (more than several hundred times in the frequency 
range from 10 Hz to 2 kHz) by a cycling stress induced trap. 
Below 100 Hz, / 	after cycling is larger than that be-
fore cycling as shown in Fig. 2 (b). However, in the fre-
quency range higher than 100 Hz, /  of the device 
after cycling shows lower	since the fresh device has a fast 
changing RTN with small amplitude. 

 

 

 

 

 

Fig. 1. Bit-line current fluctuation (ΔIBL) in time domain before 
and after cycling stresses. (a)-(b) RTN is generated after 2k cy-
cling. (c)-(d) Multi-level RTN is generated after 2k cycling.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Normalized noise power spectra corresponding to IBL fluc-
tuations in Fig. 1 (a)-(b) and (c)-(d). 
 
To obtain more reliable information on the cycling stress, 

cumulative probability of / 	at 20 Hz and ΔIBL are 
prepared in Fig. 3. These data were measured in several 
hundred devices at IBL of 100 nA. Square symbols represent 
measured data in the fresh devices. The data represented by 
solid circles are obtained after 1000th cycling. The data af-
ter 2000th cycling are represented by triangle symbols. As 
the number of cycle increases, / 	and ΔIBL are in-
creased. In the fresh devices, the distribution of /  
ranges from 3×10-8 to 5×10-5, and the range is increased 
from 10-7 to 5×10-4 after 2000th cycling. Especially, ΔIBL 
was increased up to 80 nA which is 80% of a read current 
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