Investigation of resistive switching mechanism and improved memory characteristics using $\operatorname{IrO}_{\mathbf{x}} /$ high $-\kappa_{\mathrm{x}} / \mathbf{W}$ structure

S. Maikap ${ }^{1, *}$, W. Banerjee ${ }^{1}$, B. L. You ${ }^{1}$, D. Jana ${ }^{1}$, H. Y. Lee ${ }^{2}$, W. S. Chen ${ }^{2}$, F. T. Chen ${ }^{2}$, M. J. Kao ${ }^{2}$, and M. J. Tsai ${ }^{2}$
${ }^{1}$ Thin Film Nano. Tech. Lab., Department of Electronic Engineering, Chang Gung University, Tao-Yuan, 333, Taiwan
${ }^{2}$ Electronics and Opto-Electronics Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
*Corresponding Author: Tel: 886-3-2118800 ext. 5785 Fax: 886-3-2118507 E-mail: sidhu@mail.cgu.edu.tw

1. Introduction

Recently, resistive switching memory (ReRAM) device is one of the promising candidates for future high-performance, low power consumption, and low cost nonvolatile memory applications [1-7]. Due to unknown switching mechanism and unstable switching, it is becoming bottleneck for applications in future. Most of the times, an initial formation is as essential process to have successive resistive hysteresis. But interestingly formation polarity has an important role to get impressive electrical characteristics. Formation polarity dependent ReRAM devices using high- $\mathrm{K}_{\mathrm{x}} \mathrm{AlO}_{\mathrm{x}}, \mathrm{GdO}_{\mathrm{x}}$ and $\mathrm{HfO}_{\mathrm{x}}$ switching materials in a via structure with flat surface (FS) have been investigated and resistive switching mechanisms are also explained schematically based on electrical data. Furthermore, impact of nanodomes (NDs) in an $\mathrm{IrO}_{\mathrm{x}} / \mathrm{AlO}_{\mathrm{x}} / \mathrm{W}$ cross-point memory for the high-density 3D integration with an excellent uniformity, multi-level operation with low voltage operation of $\pm 2 \mathrm{~V}$, low current compliance (I_{CC}) of $<200 \mu \mathrm{~A}$, low power of $10 \mu \mathrm{~W}$, and data retention at $85^{\circ} \mathrm{C}$ has also been reported.

2. Experiment

Firstly, a SiO_{2} layer with a thickness of 200 nm was grown by thermal oxidation on Si wafer. Next, 200nm thick tungsten (W) layer as a bottom electrode (BE) was deposited by RF sputter system for both via and cross-point type devices. Then, a SiO_{2} layer with a thickness of 200 nm was deposited. Then, high-к $\mathrm{AlO}_{\mathrm{x}}, \mathrm{GdO}_{\mathrm{x}}$ and HfO_{x} materials were deposited on both via and cross-point structures. The BE surface was oxidized during deposition process and form WO_{x} layer. A layer of $\mathrm{IrO}_{\mathrm{x}}(\sim 200 \mathrm{~nm})$ material as a top electrode (TE) was deposited by RF sputtering system. Finally, lift-off was performed to obtain the memory device.

3. Results and discussion

Fig. 1 shows the current vs voltage (I-V) characteristics of the via type devices in $\mathrm{IrO}_{x} /$ high $-\kappa_{x} / \mathrm{W}$ structure with a CC of $>500 \mu \mathrm{~A}$. The I-V curve of the virgin devices and the hysteresis characteristics of the negative formation (NF) devices [Figs. 1(a), (c) \& (e)] and the positive formation (PF) [Figs. 1(b), (d) \& (f)] for the $\mathrm{AlO}_{\mathrm{x}}, \mathrm{GdO}_{\mathrm{x}}$ and $\mathrm{HfO}_{\mathrm{x}}$ based ReRAM devices are shown. After the formation process, the hysteresis switching direction is shown by arrows. Considering the electron affinities (χ) of $3.33,1.25,1.2$ and 2.14 eV for WO_{3}, $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}$ and HfO_{2} layers, respectively, the values of the effective barrier heights $\left(\Phi_{\mathrm{b}}\right)$ are found to be $\left[\Phi_{\mathrm{b}}=\left(\Phi_{\mathrm{m}}\right)_{\mathrm{W}}-(\chi)_{\mathrm{WO} 03}\right] 1.3$ eV for the $\mathrm{W} / \mathrm{WO}_{\mathrm{x}}$ interface and $\left[\left(\Phi_{\mathrm{b}}\right)=\left(\Phi_{\mathrm{m}}\right)_{\mathrm{IrOx}}-(\chi)_{\text {high-k oxide }}\right] 3.95$, 4.0, and 3.06 for the $\mathrm{IrO}_{x} / \mathrm{AlO}_{x}, \mathrm{IrO}_{x} / \mathrm{GdO}_{\mathrm{x}}$ and $\mathrm{IrO}_{\mathrm{x}} / \mathrm{HfO}_{\mathrm{x}}$ interface, respectively. Therefore, the electron injection at the $\mathrm{TE} / \mathrm{high}-\mathrm{K}_{\mathrm{x}}$ will be lower than that of the $\mathrm{BE} /$ high $-\kappa_{\mathrm{x}}$ interface. The lower formation voltage of the PF devices have the ability to protect the device degradation as compare to the NF devices. Stable 100 consecutive DC switching cycles are observed for the high-к PF devices as compare to the unstable 5 DC cycles of the NF devices. A higher RESET current is observed for the NF devices as compare to the PF devices owing to the current overshoot effect (Fig. 2). To rupture the filament, both oxidation and joule heating are responsible for the NF devices, while the oxidation is reponsible for the PF devices. For the NF devices, the LRS and HRS currents are fitted with ohmic and Schottky emission, respectively [Fig. 3(a)]. The oxygen deficient filaments formation is due to the oxygen ions $\left(\mathrm{O}^{2-}\right)$ migration from the high $-\kappa_{x}$ layer toward the WO_{x} layer under SET [Fig. 4(a)]. The
conducting filaments are ruptured randomly by oxidation under RESET [Fig. 4(b)], which shows unstable switching. On the other hand, both LRS and HRS currents are fitted linearly in log-log plot for the PF devices, which follows the TC-SCLC model [Fig. 3(b)]. The filament formation is also due to O^{2-} ions migration from the high $-\kappa_{\mathrm{x}}$ toward TE/high $-\kappa_{\mathrm{x}}$ interface under SET [Fig. 4(c)], which results a series oxygen-rich layer formation and limits the number of filament and diameter. Under RESET, the filament is oxidized at the oxygen-rich layer/filament interface, resulting in a reduction of random ruptured of the filaments as well as repeatable switching is observed [Fig. 4(d)]. To improve further the resistive switching characteristics, a cross-point memory in an $\mathrm{IrO}_{\mathrm{x}} / \mathrm{AlO}_{x} / \mathrm{W}$ structure with NDs on the BE is designed for the PF devices [Fig. 5(a)]. Schematic view [Fig. 5(b)] and HRTEM image [Fig. 5(c)] of the cross-point memory with a tip ND diameter of $\sim 3 \mathrm{~nm}$ are shown. Fig. 6 shows excellent repeatable 1000 consecutive I-V hysteresis switching cycles with a current compliance (I_{CC}) of $200 \mu \mathrm{~A}$ and an small operation voltage of $\pm 2 \mathrm{~V}$. The applicable SET voltage +1 V is observed. This cross-point device is formation free because of the defects within percolation length. All devices show an excellent switching with a resistance ratio (HRS/LRS) of $>10^{2}$. The filament formation [Fig. 7(a)] and rupture [Fig. 7(b)] are controlled and confined by the tip of the ND because of high electric field on the tip of ND. Fig. 8 shows the statistical distribution of different levels for the LRS (controlled by I_{CC} of $50-200 \mu \mathrm{~A}$) and HRS (controlled by stop voltage, $\mathrm{V}_{\text {Stop }}$ of -1.2 to -2.0 V). Clearly identified LRS [Fig. $9(\mathrm{a})$] and HRS [Fig. 9(b)] of 10^{4} cycles with I_{CC} values from $10 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ and $\mathrm{V}_{\text {STOP }}$ values from -1.2 V to -2.0 V , with well defined sensing window are obtained. Fig. 9(c) shows a very good $>40 \mathrm{k} \mathrm{AC}$ cycles of the devices at the I_{CC} of $200 \mu \mathrm{~A}$. Fig. 9 shows the retention at $85^{\circ} \mathrm{C}$ for the NF and PF devices with $\mathrm{AlO}_{\mathrm{x}}$ layer. Fig. 10 shows excellent data retention of $>10^{4} \mathrm{~s}$ for the cross-point resistive switching memory devices with different levels of LRS [Fig. 10(a)] and HRS [Fig. 10(b)] at $85^{\circ} \mathrm{C}$.

4. Conclusion

High $-\kappa_{x}\left(\mathrm{HfO}_{\mathrm{x}}, \mathrm{GdO}_{\mathrm{x}}\right.$, and $\left.\mathrm{AlO}_{\mathrm{x}}\right)$ oxide based formation-polaritydependent resistive switching mechanism and improved memory performance of cross-point resistive switching memory devices are investigated for the first time. Oxygen ion migration and controlled migration by series oxygen-rich layer and nanodomes are the key points to improve the memory performance in an $\mathrm{IrO}_{\mathrm{x}} / \mathrm{high}-\mathrm{k}_{\mathrm{x}} / \mathrm{W}$ structure. Very stable resistance switching behaviors with a long endurance of $>40 \mathrm{k}$ cycles, excellent retention at $85^{\circ} \mathrm{C}$, MLC operation in both LRS and HRS with small operation voltage of $\pm 2 \mathrm{~V}$ and an I_{CC} of $<200 \mu \mathrm{~A}$ are achieved. The cross-point memory device can be operated with a low current of $10 \mu \mathrm{~A}$ for future nanoscale non-volatile memory with 3D integration.

Acknowledgment

Thanks a lot to National Science Council (NSC), Taiwan, under contract no. NSC-101-2221-E-182-061 to support this research work.

References

[1] A. Sawa, Mater. Today, vol. 11, p. 28, 2008. [2] R. Waser et al., Advanced Mat. vol. 21, p. 2632, 2009. [3] J. J. Yang et al., Appl. Phys. Lett., vol. 92, pp. 232102, 2010. [4] H.Y. Lee et al., Electron Dev. Lett., vol. 31, pp. 44-46, 2010. [5] C. P. Hsiung et al., ACS Nano, 4, 5414 (2010). [6] W. Banerjee et al., J. Electrochem. Soc., vol. 159, p. H1, 2011. [7] W. Banerjee et. al., Jpn. J. Appl. Phys, vol. 51, 04DD10, 2012.

Fig. 1. Typical I-V hysteresis characteristics of (a) NF: $\mathrm{AlO}_{\mathrm{x}}$, (b) PF: $\mathrm{AlO}_{\mathrm{x}}$, (c) NF: $\mathrm{GdO}_{\mathrm{x}}$, (d) PF: $\mathrm{GdO}_{\mathrm{x}}$, and (e) NF: $\mathrm{HfO}_{\mathrm{x}}$, (f) PF: $\mathrm{HfO}_{\mathrm{x}}$ memory device for the via structures.

Fig. 2. RESET current comparison of the NF and PF devices with high- κ (a) $\mathrm{AlO}_{\mathrm{x}}$, (b) $\mathrm{GdO}_{\mathrm{x}}$ and (c) $\mathrm{HfO}_{\mathrm{x}}$ in via structures. Higher RESET current can be observed for the NF devices as compare to that of the PF devices, which can degrade the device performance.

\ln (Voltage) Fig. 3. (a) Schottky fit of HRS and ohmic of LRS (inset) for NF and (b) TC-SCLC for PF device.
 SET, (b) RESET, and (c) SET and (d) RESET for PF device. The controlled O^{2-} ions migration of the PF device is playing the key role to improve device performance.

Fig. 7. Schematic mechanisms under the (a) SET and (b) RESET operations.

Fig. 8 Device-to-device Weibull distribution with MLC at LRS and HRS.

Fig. 5. (a) Optical image of 1×1 point, (b) illustration of a single cross-point memory with $\mathrm{AlO}_{\mathrm{x}}$ as a switching material. (c) HRTEM image of $\mathrm{W}-\mathrm{ND}$ formation at BE.

Fig. 6. Excellent switching characteristics with 1000 consecutive cycles. A high resistance ratio of >100 is observed.

(b) Cross-point devices

Fig. 9. Retention characteristics of the Fig. 10. (a) Devices are capable to show the data retention Fig. 8. Read immunity measurement high-к $\mathrm{AlO}_{\mathrm{x}}$ based via devices for the NF at $85^{\circ} \mathrm{C}$ with a low power of $50 \mu \mathrm{~W}$. (b) Fixed LRS can be with MLC at (a) LRS and (b) HRS of and PF conditions. LRS of the PF devices observed with distinguishable HRS at different V $V_{\text {STOP }}$ 10^{4} cycles at each level. (c) Excellent goes slightly higher after $10^{4} \mathrm{~s}$ of retention. values. Retention at each level was measured for $10^{4} \mathrm{~s}$ of endurance >40000 AC cycles.
retention time at $85^{\circ} \mathrm{C}$.

