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1. Introduction  
Strained silicon on silicon-germanium substrates was ex-
plored in an effort to boost carrier mobility since the early 
1990s. In only a few short years, both, localized tensile as 
well as compressive strain was being deliberately intro-
duced in a variety of ways to enhance carrier mobility in 
high performance devices.  
Further a novel approach was predicted to achieve a direct 
band gap in germanium, and hence optical emission in this 
technologically important group-IV element by applying 
tensile strain along the (111) direction [1]. 
Thus in particular nanowires attracted a lot of attention for 
two reasons. First, their geometrical smallness facilitates 
the fabrication of novel devices which can easily be incor-
porated into existing fabrication lines. Second, the stiffness 
of NWs should enable the proposed ultra-high strain levels. 
 
2. General Instructions 

In this paper we present an approach for electrical and 
electro-optical characterization of individual semiconductor 
nanowires under ultra-high tensile strain conditions. The 
measurements were performed on single crystalline va-
por-liquid-solid grown silicon, germanium and gallium 
arsenide nanowires, monolithically integrated into a mi-
cromechanical 3-point strain module (see Figure 1). 

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 1 3-point straining module enabling in-situ electrical and 
optical characterization of heavily strained nanowires. 

 

Pure uniaxial stress is applied along the <111> growth di-
rection of individual nanowires while at the same time per-
forming electrical and optical characterization. Raman 
spectroscopy and nanofocussed synchrotron X-ray diffrac-
tion of these structures enables us to quantify and spatially 
resolve the strain distribution in individual nanowires.  

We observed an anomalously high and negative-signed 
piezoresistive coefficient for silicon [2] and germanium 
nanowires (see Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Relative changes in resistivity Δρ/ρ0 vs. strain of the 〈111〉 
oriented Ge nanowires. 
 

Spectrally resolved photocurrent characterization on 
strained nanowires gives experimental evidence on the 
strain-induced modifications of the band structure. Thus 
photocurrent spectra reveal a red-shift in the direct bandgap 
energy with strain. In germanium nanowires e.g., at the 
maximum tensile strain of 2.6%, resistivity decreased by a 
factor of 30 and the direct bandgap energy was reduced by 
88meV (see Figure 3). 
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Fig. 3 Reduction of the bandgap energy of strained Ge nan-
owires. 
 
 
For GaAs nanowires monolithically integrated in the 
3-point straining module we present strain dependent mi-
cro-photoluminescence spectra.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Comparison of PL spectra of bulk GaAs, GaAs nanowire 
and a strained GaAs nanowire. The inset shows the GaAs nan-
owire monolithically integrated into the Si based straining mod-
ule. 
 
 
We have further analyzed the effect of strain on the resis-
tivity by means of numerical simulation. The two dominant 
strain effects considered were a change in mobility and 
bandgap narrowing. Our simulations clearly show that for 
Si nanowires at room temperature even a considerably re-
duced bandgap does not give any relevant contribution of 
the minority carriers to the total current. The same holds, if 
carrier lifetimes are varied by a few orders of magnitude. 
This means, current remains unipolar and the reduction in 
resistivity can only be attributed to a mobility increase, and 
not to the onset of a bipolar conduction mechanism. The 
simulations performed indicate that the resistivity charac-
teristics mainly reflect the strain-dependent hole mobility, 
and that the current measured is unipolar and space charge 
limited. 
 
 

3. Conclusions 
 
Individual stressed nanowires are recognized as an ideal 
platform for the exploration of strain-related electronic and 
optical effects with applications in high performance 
nano-optoelectronic devices.  
Closing, strain engineering involves just smoothly deform-
ing the material and strained nanowires would be a semi-
conductor that has a tuneable resistivity and/or bandgap 
while keeping its other unique characteristics. There is a 
vast geometric and orientational parameter space over 
which the electro-optical properties can be tuned, and it is 
unlikely that the nanowire geometries, orientation and dop-
ing parameters studied here will prove optimal for e.g. 
maximum piezoresistive response. While the anomalous 
piezoresistive phenomenon obtained in ultra-strained Si and 
Ge nanowires may pave the way towards sensitive, silicon 
compatible strain gages or high performance nanoelectronic 
devices, these effects should apply to many substances be-
yond Si. With respect to the optical properties such tuning 
of bandgap and thereby emission wavelength will enable 
novel sensor or light emitting devices. 
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