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1. INTRODUCTION

Germanium-tin (Gey.,Sn,) is an attractive channel material
for high performance n-MOSFETSs due to its high electron mobil-
ity [1]. Gey.,Sn, channel n-MOSFETS was recently reported [2],
and non-self-aligned metallic Ni contacts n* Ge,.,Sn, source and
drain (S/D) were used. Good self-aligned ohmic contacts with
low Schottky barrier height on n* Ge,,Sn, S/D are needed.
However, there are no reports of self-aligned ohmic contact for-
mation on n-type Ge,Sn, (n-Gey,Sn,).

In this work, we report the first demonstration of
self-aligned nickel stanogermanide Ni(Ge.,Sn,) contacts on
n-Ge,.,Sny, featuring ion implantation and segregation of sele-
nium (Se) or sulfur (S) at the Ni(Ge,,Sn,)/n-Ge,,Sn, interface.
Self-aligned ohmic contacts on n-Ge;.,Sn, were achieved for the
first time.

2. DEVICE FABRICATION

Fig. 1 shows the process flow used for fabrication of con-
tacts or Schottky diodes on n-GeSn. Schematic of a
Ni(GeSn)/n-GeSn contact with pre-stanogermanide Se or S im-
plant and segregation is shown in Fig. 2.

A 150 nm thick GeSn film was epitaxially grown on n-type
Ge (100) substrate using solid source MBE system at 180 °C [11],
as shown in Fig. 3. The substitutional Sn composition is 4.2%,
as determined by high resolution X-ray diffraction (HRXRD).
The as-grown GeSn film was p type, and the unintentional doping
concentration is 4.98 x 10'® cm™, as measured by Hall measure-
ment. The GeSn films were counter-doped using phosphorus (P)
with a dose of 1 x 10 cm™ at energies of 50, 130, 250 keV. A
400 °C 5-minute rapid thermal anneal (RTA) step was used for P
activation.

200 nm PECVD SiO, was deposited and patterned to define
active regions. Se and S implants were performed at energies of
8 and 5 keV, respectively, at the same dose of 1 x 10%® cm?. A
10-nm-thick Ni was deposited after native oxide removal in the
active region. This was followed by a RTA at 350 °C for 30 s in
N, ambient for the stanogermanidation. Unreacted Ni was then
removed using sulfuric acid (H,SO,4). This completed the for-
mation of self-aligned Ni(Gey.,Sn,) contacts.

Finally, 200 nm thick Al was deposited on the backside of
the samples. I-V characteristics of the contact devices with an
area of 100 x 10@m 2 were measured. Blanket samples were
also prepared using the same implant and stanogermanidation
conditions for physical analyses.

3. RESULTS AND DISCUSSION
Se and S are used for the first time to lower effective electron

Schottky barrier height (®g") of Ni(Ge,.,Sn,)/n-Ge4.,Sn, contacts.

Ohmic I-V behaviour is clearly observed for the samples with Se
or S implant (Fig. 4). ®g" was extracted using the cur-
rent-voltage method. The increased reverse currents indicate the
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reduction of the effective Schottky barrier height for electrons in
Fig. 5. The extracted @5" of the samples with Se and S implant
are 0.16 and 0.17 eV, respectively. Fig. 6 shows the cumulative
probability plot of the reverse current measured at -1 V for
Ni(Ge,,Sny)/n-Ge,,Sn, contacts with Se and S implant.
Atomic force microscopy (AFM) measurement was used to check
the surface roughness of Ni(Ge,Sn,) samples with S and Se
implant, as shown in Fig. 7. The surface root mean square (RMS)
values of the Ni(Ge1.,Sn,) samples with Se and S implant are 0.73
and 0.53 nm, respectively.

X-ray diffraction (XRD) characterization was performed to
check the phase of nickel stanogermanide. It is found that nei-
ther Se nor S implant affects nickel monostanogermanide forma-
tion, as shown in Fig. 8. Fig. 9 and 10 show the depth profiles of
the implanted species in Ni(Ge;.,Sn,)/n-Gey.,Sn, as obtained
by secondary ion mass spectroscopy (SIMS) measurement. Im-
planted Se and S atoms are pushed to Ni(Ge1,Sn,)/n-Ge,,Sny
interface during stanogermanidation, and clear segregation peaks
of Se and S are observed. It is found that Se segregation peak is
located inside the Ni(Ge,,Sny) film while S segregation peak is at
the interface of Ni(Ge,,Sny) and n-Ge;,Sny. The substantial
®g" reduction of Ni(Ge,..Sn,)/n-Ge,.,Sn, contacts is attributed to
Se or S segregation. In addition, we compare the effective elec-
tron Schottky barrier height of Ni(Gey,Sn,)/n-Ge,,Sn, and
NiGe/n-Ge contacts with various species segregation reported in
literature and this work (Fig. 11). Both Se and S show a strong
effect on ®g" reduction of the Ni(Ge,,Sn,)/n-Ge,,Sn, contacts,
which may be caused by the enhancement of the traps assisted
tunnelling [14].

4. CONCLUSION

We demonstrated self-aligned Ni(Ge;.,Sn,) ohmic contact
on n-Gey,Sn, using Se or S implant and segregation. Nickel
monostanogermanide was formed for both Se and S samples, and
clear segregation peak of Se or S was observed.
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Fig. 1. Process flow for fabricat- Fig. 2. Schematic of a Ni(GeSn)/n-GeSn Schottky diode with  Fig. 3. TEM image of epitaxial GeSn

Seg regated_Se orS

20nm

?

@

@D
5 p ] RS

ing Ni(GeSn) / n-GeSn Schottky pre-stanogermanide Se or S implant and segregation. Seand Sare film grown on Ge(100) substrate.
diodes with pre-stanogermanide Se  pushed to the Ni(GeSn)/n-GeSn interface after stanogermanidation GeSn film quality is good.  The

or S implant and segregation. due to the snowplow effect. GeSn/n-Ge interface is clearly identi-
fied.
s5x10°fF ’ ’ «— T T T . 1ooF T T B 5 .
€ 410°F g 10° ®,"=0.16 eV 98 Reverse currents M [e]
é’ 3x10°F P4 > ©80F measured ™ o ]
< 2A10°F  Sampleswith Se or S: E 10° 1 = at-1Vv n o
é‘ 1x10°F Ohmic Behavior p = , D" =0.17 eV '% 60k ™ o h
% 0 ] S 10 Anneal: 1 '5 °
- ] o 350°C 30s N T Se ~— S—
% lzﬁgzz £ 10°f Control without z 1 ¢ “f o ]
o —o—Control | ] [ implant = u °
£ 3o’ ——Se Implant| 4 g 10" = —A— Se Implant 8 ot - ° ]
6 -4X10° B —&—S Implant | ] (@) =—S Implant 1§ g - °
5x10° L L L 102l L L S 0 L L L
-10 05 00 05 10 -10 05 0.0 05 10 © 20 2540 30 3500 404510
Voltage (V) Voltage (V) Current Density (A/cn)

Fig. 4. Linear scale |-V characteristics of
Ni(GeSn) contacts with Se or S implant and
segregation.  Ohmic behavior is clearly ob-
served.

(b)

Fig. 5. @z of Ni(GeSn) contacts with Se or  Fig. 6. The cumulative probability plot of the
S implant and segregation is extracted using reverse current measured at -1 V for
current-voltage method.
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Fig. 7. Surface RMS roughness graph of Ni(GeSn)/n-GeSn blanket samples with (a)

S or (b) Se implant and segregation.
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Fig. 9. SIMS depth profiles of the implanted
species in Ni(GeSn)/n-GeSn contact with S im-
plant. S segregation occurs at the
Ni(GeSn)/n-GeSn interface.
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Fig. 8. XRD spectra show Ni(GeSn) formation for samples
with S and Se implant and segregation.
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Fig. 10. SIMS depth profiles of the implanted ~ Fig. 11. Comparison of Schottky barrier
species in Ni(GeSn)/n-GeSn contact with Se  height of NiGe/n-Ge and Ni(GeSn)/n-GeSn

implant.
Ni(GeSn) layer.

Se segregation peak is found inside  contacts with various species segregation in
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literature and this work.
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