Nickel Stanogermanide Ohmic Contact on N-type Germanium-Tin (Ge_{1-x}Sn_x) using Se and S Implant and Segregation

Yi Tong,¹ Shaojian Su,² Bin Liu,¹ Lanxiang Wang,¹ Phyllis Shi Ya Lim,¹ Yue Yang,¹ Wei Wang,¹ Kain Lu Low,¹ Guangze Zhang,² Chunlai Xue,² Buwen Cheng,² Genquan Han,^{1,} ** and Yee-Chia Yeo.^{1,} *

¹ Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore 117576.

² State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing,

People's Republic of China 100083.

**Phone and Fax: +65 6516-1589, E-mail: hangenquan@ieee.org *Phone: +65 6516-2298, Fax: +65 6779-1103, E-mail: yeo@ieee.org

1. INTRODUCTION

Germanium-tin (Ge_{1-x}Sn_x) is an attractive channel material for high performance n-MOSFETs due to its high electron mobility [1]. Ge_{1-x}Sn_x channel n-MOSFETs was recently reported [2], and non-self-aligned metallic Ni contacts n⁺ Ge_{1-x}Sn_x source and drain (S/D) were used. Good self-aligned ohmic contacts with low Schottky barrier height on n⁺ Ge_{1-x}Sn_x S/D are needed. However, there are no reports of self-aligned ohmic contact formation on n-type Ge_{1-x}Sn_x (n-Ge_{1-x}Sn_x).

In this work, we report the first demonstration of self-aligned nickel stanogermanide Ni(Ge_{1-x}Sn_x) contacts on n-Ge_{1-x}Sn_x, featuring ion implantation and segregation of selenium (Se) or sulfur (S) at the Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x interface. Self-aligned ohmic contacts on n-Ge_{1-x}Sn_x were achieved for the first time.

2. DEVICE FABRICATION

Fig. 1 shows the process flow used for fabrication of contacts or Schottky diodes on n-GeSn. Schematic of a Ni(GeSn)/n-GeSn contact with pre-stanogermanide Se or S implant and segregation is shown in Fig. 2.

A 150 nm thick GeSn film was epitaxially grown on n-type Ge (100) substrate using solid source MBE system at 180 °C [11], as shown in Fig. 3. The substitutional Sn composition is 4.2%, as determined by high resolution X-ray diffraction (HRXRD). The as-grown GeSn film was p type, and the unintentional doping concentration is 4.98×10^{16} cm⁻³, as measured by Hall measurement. The GeSn films were counter-doped using phosphorus (P) with a dose of 1×10^{13} cm⁻² at energies of 50, 130, 250 keV. A 400 °C 5-minute rapid thermal anneal (RTA) step was used for P activation.

200 nm PECVD SiO₂ was deposited and patterned to define active regions. Se and S implants were performed at energies of 8 and 5 keV, respectively, at the same dose of 1×10^{15} cm⁻². A 10-nm-thick Ni was deposited after native oxide removal in the active region. This was followed by a RTA at 350 °C for 30 s in N₂ ambient for the stanogermanidation. Unreacted Ni was then removed using sulfuric acid (H₂SO₄). This completed the formation of self-aligned Ni(Ge_{1-x}Sn_x) contacts.

Finally, 200 nm thick Al was deposited on the backside of the samples. *I-V* characteristics of the contact devices with an area of 100×100 m² were measured. Blanket samples were also prepared using the same implant and stanogermanidation conditions for physical analyses.

3. RESULTS AND DISCUSSION

Se and S are used for the first time to lower effective electron Schottky barrier height (Φ_B^n) of Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x contacts. Ohmic *I-V* behaviour is clearly observed for the samples with Se or S implant (Fig. 4). Φ_B^n was extracted using the current-voltage method. The increased reverse currents indicate the reduction of the effective Schottky barrier height for electrons in Fig. 5. The extracted Φ_B^n of the samples with Se and S implant are 0.16 and 0.17 eV, respectively. Fig. 6 shows the cumulative probability plot of the reverse current measured at -1 V for Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x contacts with Se and S implant. Atomic force microscopy (AFM) measurement was used to check the surface roughness of Ni(Ge_{1-x}Sn_x) samples with S and Se implant, as shown in Fig. 7. The surface root mean square (RMS) values of the Ni(Ge_{1-x}Sn_x) samples with Se and S implant are 0.73 and 0.53 nm, respectively.

X-ray diffraction (XRD) characterization was performed to check the phase of nickel stanogermanide. It is found that neither Se nor S implant affects nickel monostanogermanide formation, as shown in Fig. 8. Fig. 9 and 10 show the depth profiles of the implanted species in Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x as obtained by secondary ion mass spectroscopy (SIMS) measurement. Implanted Se and S atoms are pushed to Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x interface during stanogermanidation, and clear segregation peaks of Se and S are observed. It is found that Se segregation peak is located inside the Ni(Ge_{1-x}Sn_x) film while S segregation peak is at the interface of Ni(Ge_{1-x}Sn_x) and n-Ge_{1-x}Sn_x. The substantial Φ_B^{n} reduction of Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x contacts is attributed to Se or S segregation. In addition, we compare the effective electron Schottky barrier height of Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x and NiGe/n-Ge contacts with various species segregation reported in literature and this work (Fig. 11). Both Se and S show a strong effect on Φ_B^n reduction of the Ni(Ge_{1-x}Sn_x)/n-Ge_{1-x}Sn_x contacts, which may be caused by the enhancement of the traps assisted tunnelling [14].

4. CONCLUSION

We demonstrated self-aligned Ni(Ge_{1-x}Sn_x) ohmic contact on n-Ge_{1-x}Sn_x using Se or S implant and segregation. Nickel monostanogermanide was formed for both Se and S samples, and clear segregation peak of Se or S was observed.

ACKNOWLEDGEMENT. B. Cheng and C. Xue acknowledge support from Grant no. 61036003, 61176013, and 61177038, respectively, from the National Natural Science Foundation of China. Y.-C. Yeo acknowledges support from the National Research Foundation under Grant NRF-RF2008-09.

REFERENCES

- [1] J. D. Sau et al., Phys. Rev. B 75, 045208, 2007.
- [2] G. Han et al., VLSI Symposium, 2012.
- [3] M. Koike et al., Appl. Phys. Express 4, 021301, 2011.
- [4] K. Ikeda et al., Appl. Phys. Lett. 88, 152115, 2006.
- [5] A. Dimoulas *et al.*, *MRS Bulletin*, 34, pp.522, 2009.
- [6] K.-W. Ang et al., IEEE Electron Device Lett. 29, pp.708, 2008.
- [7] T. Nishimura et al., Solid State Electron. 60, pp.46, 2011.
- [8] L. Wang et al., VLSI TSA Symposium, pp. 10, 2012.
- [9] L. Wang et al., Electrochem. Solid-State Lett. 15, pp.H179, 2012.
- [10] G. Han et al., IEEE Electron Device Lett. 33, pp.634, 2012.
- [11] S. Su et al., J. Cryst. Growth, 317, pp.43, 2011.
- [12] M. Mueller et al., Mater. Sci. Eng. B 154/155, pp. 168.
- [13] D. K. Schroder, "Semiconductor material and device characterization".
- [14] Y. Tong et al., VLSI TSA Symposium, pp. 23, 2012.

 MBE growth GeSn (150 nm) on ntype Ge substrate
Counter dope implant using phosphorus
Deposition of SiO₂ (200 nm)
Formation of active regions
Pre-stanogermanide Se or S
Implant with a dose of 1 × 10¹⁵ cm⁻²
Deposition of Ni (10 nm)
Direct formation of a 50 °C 20 s in

- NiGeSn formation at 350 °C 30 s in
- N2 ambient
- \bigcirc Unreacted metal removal by H₂SO₄ \bigcirc Deposition of Al (200 nm) on backside

Fig. 1. Process flow for fabricating Ni(GeSn) / n-GeSn Schottky diodes with pre-stanogermanide Se or S implant and segregation.

Fig. 2. Schematic of a Ni(GeSn)/n-GeSn Schottky diode with pre-stanogermanide Se or S implant and segregation. Se and S are pushed to the Ni(GeSn)/n-GeSn interface after stanogermanidation due to the snowplow effect.

film grown on Ge(100) substrate. GeSn film quality is good. The GeSn/n-Ge interface is clearly identified. 00 Reverse currents ■ ●

Fig. 4. Linear scale *I-V* characteristics of Ni(GeSn) contacts with Se or S implant and segregation. Ohmic behavior is clearly observed.

Voltage (V) Fig. 5. Φ_{B^n} of Ni(GeSn) contacts with Se or S implant and segregation is extracted using current-voltage method.

Fig. 6. The cumulative probability plot of the reverse current measured at -1 V for Ni(GeSn)/n-GeSn contacts.

Intensity (a.u.) Intensity (a

Fig. 7. Surface RMS roughness graph of Ni(GeSn)/n-GeSn blanket samples with (a) S or (b) Se implant and segregation.

Fig. 8. XRD spectra show Ni(GeSn) formation for samples with S and Se implant and segregation.

Fig. 9. SIMS depth profiles of the implanted species in Ni(GeSn)/n-GeSn contact with S implant. S segregation occurs at the Ni(GeSn)/n-GeSn interface.

Fig. 10. SIMS depth profiles of the implanted species in Ni(GeSn)/n-GeSn contact with Se implant. Se segregation peak is found inside Ni(GeSn) layer.

Fig. 11. Comparison of Schottky barrier height of NiGe/n-Ge and Ni(GeSn)/n-GeSn contacts with various species segregation in literature and this work.

#