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Abstract 
In this work we provide a comprehensive evaluation of a novel, 

low-resistance Co-Al alloy vs. W to fill aggressively scaled gates 
with high aspect-ratios (Hgate50-60nm, Lgate20-25nm). We 
demonstrate that, with careful liner/barrier materials selection and 
tuning, well-behaved devices are obtained, showing: tight Rgate 
distributions down to Lgate20nm, low-VT values, comparable DC 
and BTI behavior, and improved RF response. The impact of fill-
metals intrinsic stress, including presence of occasional voids in 
narrow W-gates, on fabrication and performance is also explored. 

Introduction 
A low resistivity gate fill-metal is important to minimize parasitic 

gate resistance and to maximize performance, with variability 
control being key to meet the ever-increasingly stability challenges 
faced by scaled device circuits. Al-based metals have been 
successfully implemented as gate fill-metal in replacement high-k/ 
metal gate (RMG) devices manufacturing (Lgate down to 30nm) 
[1,2], with Ti [3-5] and more recently Co [5,6] reported as suitable 
wetting layers for Al to reflow, voids-free, into the gate trenches. 
W-filled RMG devices have also been demonstrated [7], and we 
will further explore in this work W potential to allow further 
options for channel stress enhancement thanks to its high intrinsic 
stress. Shrinking CDs and higher aspect-ratios (AR) for advanced 
nodes RMG gates represent a critical challenge for fill-gate 
metallization to enable further scaling. It is in this context that we 
will provide here an evaluation of W vs. Co-Al as gate fill-metal.  

Device fabrication 
The process flow used for device fabrication is illustrated in 

Fig.1 [6,7]. Silicide in source/drain (S/D) areas is formed after 
RMG module to allow introduction of higher thermal budgets 
during/after gate stack deposition. (ALDCVD)-W or HP-PVD 
Al [using a low-temperature (400C) reflow and combined with 
different liner/barrier layers: CVD-Co wetting layer and/or TaN] 
are used as fill-metals (Fig.2) in high-k last (RMG-HKL) devices, 
which previously got similar IL-SiO2/HfO2 processing and 4nm 
ALD-TiN as (p-EWF)-metal (EOT0.9-1nm). 

Results & discussion 
Fig.3 shows that, contrary to Al films which have insignificant 

stress values, W films exhibit high intrinsic stress, as measured on 
blanket wafers, increasing exponentially with decreasing W 
thickness, and more rapidly so if the films are thinned down by 
CMP or dry etch-back. This brings added complexity to the W-
CMP of gates in RMG flow but, as shown in Fig.4, it can be used 
to increase the stress in the channel and boost mobility and 
performance, even if/when the gates are not W-voids free. 

Fig.5 shows gate resistance (Rgate) dependence on gate CD for 
W- vs. Al-filled gate devices. Whereas for large devices Rgate is 
considerably lower for Al-filled gates, as expected from the lower 
Al films resistivity, the difference with regards to W-gates 
decreases substantially for smaller devices. This is due to alloying 
between the Al-fill and the previously deposited liner/wetting layer 
(Co), as confirmed by physical analysis (TEM, EDS/EELS, 
HAADF- and DF-STEM results in Figs.6,7). EDS/EELS show Co 
fully diffuses/intermixes with Al, being homogenously distributed 
in narrow gates and being detected only at the bottom and likely 
also at the sidewalls in larger gates (13% Co, 87% Al in the 
narrow trenches, and 10% (0%) Co at the bottom (top) of the wide 
trenches in Fig.7). FFT patterns obtained from high-resolution 
TEM images can be indexed with a mixture of Co-Al alloys and Al 
(e.g., Al and Co2Al5 in Fig.7), and the results are consistent with 
HAADF-STEM if projection overlap with grains of different 
composition occurs. Fig.6 also shows no Al/Co diffusion from the 

fill-metal into the HfO2/TiN stack present underneath a TaN layer. 
Fig.8 shows that conductance of Al films decreases with addition 
of a Co-wetting layer, further decreasing with subsequent anneals, 
and indicative of the higher resistivity of favored Co-Al alloy 
phases. Highly conductive Al grains and more resistive Co-Al 
alloy grains therefore determine the conduction path in Al-filled 
gates, the proportion of which is determined by the gates CD and 
AR. Fig.9 shows that, by careful optimization of process conditions 
and layers thicknesses, Al enables tighter Rgate distributions down 
to 20-25nm wide gates which is demonstrative of the good filling 
properties of Al with a Co-wetting layer, whereas occasional voids 
in narrow W-gates or/and W-grains size are thought to be 
responsible for increased Rgate non-uniformity. Al-liner/barrier 
tuning is also critical to prevent impacting the EWF-metal 
underneath from alloying/Al diffusion into it, with JG(Lgate) 
indicating no impact on HfO2 (Fig.10). Figs.11,12 show that if no 
Co-layer is used prior to Al-fill, whereas low Rgate is still obtained 
in large devices, a sharp increase in Rgate occurs for narrower gates 
due to poor filling, and even 2nm ALD-TaN covering the EWF-
metal (ALD-TiN) are not effective to prevent Al diffusion into it, 
as assessed by VT (Al-rich TiN  more n-type EWF [7]). A 
scaled Co-wetting layer is important to minimize the Rgate increase 
associated with Co-Al alloy formation, while keeping good filling 
capabilities for narrow, high AR, gate trenches. Overall, Figs.11,12 
show that the best filling and diffusion control properties in RMG-
HKL devices are obtained with a TaN/Co bilayer inserted in the 
gate stack after EWF-metal (ALD-TiN) and prior to HP-PVD Al 
depositions. Fig.13 shows that TaN can be successfully introduced 
in the gate stack of RMG-HKL planar devices to act as an Al 
diffusion barrier using PVD or ALD deposition techniques. Careful 
TaN thickness tuning is required when using PVD to compensate 
for this technique’s high dependence on the AR of trenches, and 
control the layer thickness obtained at the bottom of gate trenches 
(see Fig.14). Interestingly, improved RF performance was 
measured for RMG-HKL devices with gate stack consisting of: IL-
SiO2 / HfO2 / EWF=ALD-TiN / ALD-TaN / in-situ (CVD-Co  HP-
PVD Al), as shown in Fig.15, in comparison with Al- and W-filled 
gate devices without a TaN layer in the gate stack. The two Al-
filled gates type of devices show similar Rgate values, lower than 
those of W-filled gates for the device dimensions (Lgate0.22m, 
W=10m) plotted in Fig.15. The improved RF behavior is 
therefore believed to be due to the presence of a higher conductive 
path in the vertical direction through the gate stack, corresponding 
to the pilling up of layers and interfaces that are overall less 
resistive, possibly with TaN helping to control oxygen diffusion 
into the underneath TiN before/during/after Al-filling. At the same 
time, these devices show comparable DC and BTI behavior, 
indicative of similar interface states and traps in the stack (Fig.16). 

Conclusions 
A thorough evaluation of a novel Co-Al alloy vs. W to fill 

aggressively scaled gates with high aspect-ratios showed that, with 
careful liner/barrier materials selection and tuning: tight Rgate 
distributions down to Lgate20nm, low-VT values, comparable DC 
and BTI behavior, and improved RF response can be obtained with 
(Co-Al)-filled gates. At the same time, W high intrinsic stress may 
be used to increase the stress in the channel and boost performance 
for RMG devices, even if/when the gates are not W-voids free. 
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Fig.14 – TEM images show
thickness of TaN layer at the bottom
of gate trenches is dependent (on
top) and independent (at the bottom)
on the gates aspect-ratio for PVD
and ALD depositions, respectively.

Fig.1 – Schematics of process flow used
for fabrication of replacement high-
k/metal gate (RMG) devices: high-k first
(HKF) or high-k last (HKL). This work
focus on RMG-HKL, but results are also
valid for RMG-HKF.
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Fig.2 – SEM and TEM images
of RMG-HKL devices with: a)
W-filled gates, and b) Al-filled
gates.

Fig.3 – W films intrinsic stress
increases exponentially with
decreasing W thickness, more
so if films are thinned down by
CMP or dry-etch. In contrast,
Al films have insignificant
intrinsic stress values.
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Fig.4 – The impact of voids in the fill-
metal (e.g.,W) on the final stress induced
in the channel is simulated using
structure in (a). Results are shown in (b)
for fill-metals with different intrinsic
stresses, with mobility calculations in (c).

Fig.5 – For large devices Rgate is
considerably lower (up to 3.6×)
for Al-filled gates, as expected
from Al films lower resistivity.
However, Rgate(Al- vs. W-filled
gates) decreases substantially for
smaller devices.

Fig.6 – TEM and EDS after
full device fabrication show
that Co fully diffuses into
the Al fill-metal for large
and small Lgate,Wgate devices.

Fig.13 – Introducing a PVD-TaN
layer (instead of ALD-TaN) in the
gate stack prior to Co/Al-fill can also
be effective to prevent VT shifts due
to Al diffusion. TaN thickness
tuning is needed to compensate for
PVD AR (Lgate,W-Hgate) dependence.
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Fig.8 – Conductance of Al
films after deposition by
HP-PVD and subsequent
anneals, with or without a
CVD-Co wetting layer. Co
is used to enable Al reflow
in narrow trenches.

Fig.16 – Comparable DC and BTI
behavior for RMG-HKL devices built
with W- or Al-filled gates and similar
HfO2/TiN stack underneath. A TaN/Co
bilayer was deposited prior to Al-fill.

Fig.12 – Al diffusion from fill-metal
into underneath EWF-metal (TiN) is
assessed by VT. TaN, Co, and
TaNCo layers deposited after TiN
and prior to Al-fill are compared.

Fig.7 – Physical analysis done after depositing
1nm CVD-CoHP-PVD Al for filling trenches
with various aspect-ratios show that Co diffuses/
reacts in/with Al, resulting in the formation of
AlxCoy-alloys grains or Co-doped Al grains.
Higher amount of Co detected in narrow trenches.

Fig.15 – Improved RF
performance for Al-filled gate
RMG-HKL devices, built with a
TaN layer inserted in-between the
EWF-metal (TiN) and Co/Al-fill.
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