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I. Abstract 
This letter introduces the nanoscale gate-all-around 

(GAA) n-MOS polycrystalline silicon thin-film transistors 
(poly-Si TFTs) by using microwave annealing (MWA) [1]-[3]. 
Experimental results of MWA GAA poly-Si TFTs exhibit 
high performance—with subthreshold slope (SS) of 105 
mV/dec. and Ion/Ioff ratio exceeding 107. MWA reveals the 
sufficient dopant activation efficiency and equivalent to rapid 
thermal annealing (RTA). Additionally, the short channel ef-
fect is reduced owing to the low temperature process of MWA 
and superior gate control of GAA structure. The proposed 
MWA GAA poly-Si TFT with high performance and low 
temperature process is promising for advanced 3D ICs. 

 
II. Introduction 

The aggressive scaling down of transistors is a recent 
trend, which follows Moore’s law, making device physics and 
fabrication increasingly challenged. 3D multi-layer-stack in-
tegrated circuits (ICs), and Flash memory based on poly-Si 
thin-film transistor (TFT) has subsequently been introduced 
for high packing density and low of the interconnection delay, 
power consumption and cost. Previous studies have cited that 
microwave annealing (MWA) is a good candidate to replace 
RTA during the activation process for nanoscale devices and 
3D ICs, owing to its ability to provide a lower process tem-
perature for satisfactory activation and restrain the dopants 
diffusion. Therefore, this study investigates the poly-Si TFTs 
with nanoscale GAA structure and MWA. The performance of 
these GAA poly-Si TFTs by using MWA and RTA is com-
pared as well. 

 
III. Experiment 

The fabrication steps are show in fig. 1 the GAA poly-Si 
TFTs were fabricated on a 6-inch wafer with a 400 nm-thick 
silicon dioxide layer. A 50 nm-thick undoped amorphous-Si 
layer was deposited by low-pressure chemical-vapor deposi-
tion (LPCVD) at 550 oC and solid-phase crystallized at 600 oC 
for 24 hours in nitrogen ambient. The active layer with ten 
strips of NWs was defined by electron beam (e-beam) and 
transferred by reactive ion etching. The samples were then 
dipped in a buffered oxide etch (BOE) solution for suspending 
NWs. An 8 nm-thick dry SiO2 layer was grown as the tunne-
ling oxide. Next, an in-situ doped N+ poly-silicon by LPCVD 
was deposited in 250 nm, and that pattern was defined and 
transferred by e-beam and RIE, respectively, to form the gate 
electrode. The self-aligned source, drain was implanted with 
15 keV phosphorous ions at a dose of 5 × 1015 cm−2. Dopant 
activation was performed by using two methods. One sample 
uses MWA with a frequency of 5.8 GHz by AXOM-300 DSG 
Technologies, Inc [4]. The microwave power was around 2100 
W for 600 sec. and the maximum processing temperature was 
below 500 oC under N2 ambiance. For comparison, the other 
sample use conventional RTA at 1050 oC for 1 sec. A 200 
nm-thick SiO2 passivation layer was deposited. Finally, a 300 
nm-thick Al-Si-Cu metallization was performed and sintered. 

  
IV. Results and Discussion 

Fig. 2a shows the top view SEM image of the GAA 
poly-Si TFT. Each nanowire width is 100 nm and the gate 
length is 42 nm. Fig. 2b exhibits the transmission electron 

microscopic (TEM) image of GAA poly-Si TFT. The poly-Si 
NW is surrounded by n+ poly-Si gate.  

Fig. 3 plots the drain current (Id) versus gate voltage (Vg) 
for GAA poly-Si TFT with different gate lengths (L). Com-
paratively, Id-Vg curve of the MWA device shows a high 
Ion/Ioff current ratio (> 107) and steep SS (~ 105 mV/dec.). This 
finding reveals that the MWA can effectively activate dopants 
and confine dopants diffusion. Fig.4 compares the Id-Vg 
curves for GAA poly-Si TFTs with MWA and RTA with the 
same L = 0.5 μm. Using MWA does not significantly degrade 
the on current. The SS (159 mV/dec.) and DIBL (0 V/V) val-
ues of MWA device are smaller than those of RTA devices.  

To further elucidate the GAA gate control effect, fig. 5 
compares the Id-Vg curves of conventional planar single 
channel device and GAA-NW device, which were both an-
nealed by MW. GAA device has a steeper SS (105 mV/dec.), 
lower DIBL and higher Ion/Ioff than those of the planar single 
channel device. Fig. 6 compares the Id-Vd output characteris-
tics for GAA poly-Si TFTs with MWA and RTA, respectively. 
This finding reveals that the activation efficiency of RTA is 
slightly lower than that of MWA. Fig. 7 shows the impact of 
Id-Vg curves of GAA poly-Si TFTs with MWA w/ NH3 plas-
ma [5] and MWA with the same L = 0.2 μm.  GAA MWA 
w/ NH3 plasma device has a μFE (58.01 cm2/VS), lower SS, 
lower DIBL and higher Ion/Ioff than those of the GAA MWA 
device. Above results indicate that the MWA w/ NH3 device 
has a better than the MWA device has. Fig. 8 compares the 
Id-Vd output characteristics for GAA poly-Si TFTs with MWA 
w/ HN3 plasma and MWA, respectively. This finding reveals 
that the activation efficiency of MWA is slightly lower than 
that of w/ NH3 plasma.  

The effective trap state density then can be obtained from 
the slope of the curve ln[ID/(VG-VFB) VD] versus (VG-VFB)-2 as 
in fig. 9 [6]. 

Table I. compares with important parameters, and these 
parameters degrade as gate length decreases. GAA MWA w/ 
NH3 plasma device has a μFE = 58.01 cm2/VS, SS = 102 
mV/dec., and Ion/Ioff = 9.03×108. 
 
V. Conclusion  

This study has proposed MWA to activate GAA poly-Si 
TFTs, and that are compared with RTA. Experimental results 
indicate that MWA can confine the S/D doping profiles and 
maintain the activation efficiency. The feasibility of increas-
ing the drain saturation current of MWA TFTs should be fur-
ther investigated. GAA MWA poly-Si TFTs devices are stu-
died by NH3 plasma treatment. The hydrogen and nitrogen 
radicals repair the defects in the grain boundary and interface. 
Importantly, this study examines the feasibility of GAA 
poly-Si TFT with the MWA for 3D ICs owing to its high per-
formance and low temperature process. 
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TABLE I 
Comparison of the GAA TFTs with NW-TFTs from this work to 
other published results.
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Fig. 6 Output characteristics Id-Vd 
of MWA and RTA GAA TFTs with 
L = 0.5 μm. 

Fig. 9 Extraction of Nt plot of the 
MWA GAA-NW, with and without 
NH3 plasma passivation. 

Fig. 7 Id-Vg for GAA poly-Si TFTs 
with MWA w/ NH3 and MWA with 
the same L = 0.2 μm. 

Fig. 8 Output characteristics Id-Vd 
of MWA w/ HN3 and MWA TFTs 
with L = 0.5 μm. 

Fig. 4 Comparison of Id-Vg transfer 
characteristics for MWA and RTA 
GAA TFTs with L = 0.5 μm.  

Fig. 5 Comparison of Id-Vg transfer 
characteristics for planar single 
channel with width and GAA-NW 
TFTs. 

Fig. 3 Id-Vg transfer characteristics 
of MWA GAA TFTs with different 
gate length (L) at drain voltage (Vd) 
= 0.1 V. 

Fig. 2 (a) The SEM image of active region of GAA TFTs 
with gate length (L) = 42 nm.  (b) Cross-section TEM 
image of GAA TFT.

Fig. 1 The fabrication flow of GAA poly-Si TFTs device.

[A] Yi- Hsien Lu, et al.,VLSI.,pp.142,2011.[B] H.-C. Lin et al., EDL., pp. 718, 2008.  
[C] W. -C. Chen et al., VLSI-TSA., p.121, 2009. [D] T. -C Liao et al., EDL., p.889, 2008.

-780-

 


