2D and 3D Fully-Doped Extension-less Devices for Advanced Logic and Memory Applications

A. Veloso, A. De Keersgieter, M. Aoulaiche, M. Jurczak, A. Thean, and N. Horiguchi
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Tel.: +32-16-28 17 28, Fax: +32-16-28 17 06, Email: Anabela.Veloso@imec.be

Abstract

In this work we explore the use of extension-less doping schemes for fully-depleted devices [2D: ultra-thin body and BOX (UTBB) planar devices; 3D: FinFETs on bulk-Si or SOI substrates], suitable for advanced logic, memory and dense circuit applications. We demonstrate that by using Si-epitaxial raised S/D (SEG) followed by HDD-only implantations (I/I), or by using doped-SEG and no I/I: 1) lower IOFF and DIBL; 2) steeper sub-threshold slope (SS); 3) higher IOFF/IDIBL ratio; and 4) higher retention times (UTBB-FBRAM) can be obtained, while reducing cost & cycle time with less critical I/I photos. SEG facet formation can be controlled by the spacers shape and epi pre-clean step and its impact on device characteristics for logic and FBRAM applications is also analyzed.

Introduction

Ultra-thin body fully-depleted devices (planar on ultra-thin BOX (UTBB) and FinFET-based multi-gate structures (MuGFETs)) have long been considered an attractive option for enabling further CMOS scaling beyond the 22nm technology node, thanks to their improved electrostatics and steeper sub-threshold slopes (SS), with reduced Vt variability due to lower channel dopants concentration [1-8]. For both architectures, however, the extremely thin body poses new integration challenges, namely for junction engineering and the extendibility of conventional doping techniques such as ion implantation (with tilt angle restrictions due to resist shadowing at tight pitch), parasitics and series resistance (RsD) control. Improved morphology of the multi-body and near zero-tolerability Si loss is required. In this paper, several extension-less strategies for scaled UTBB and FinFET devices are evaluated for improved performance, short-channel-effects (SCE), and variability control. Increased interest in potential memory architecture alternatives to DRAM, such as one-transistor floating body RAM (1T-FBRAM) [9,10], will also be addressed in this work through the use of a process flow fully compatible with UTBB logic technology.

Device fabrication

A schematic of the process flow used for fully-depleted devices fabrication is shown in Fig.1, for both 2D (UTBB planar) and 3D (FinFETs on bulk-Si or SOI substrates). Extension-less devices were fabricated with a narrower 1st spacer (CDs15nm after SEG) followed by SEG → HDD I/I → RTA as illustrated in Fig.2. An alternative I/I-free approach consists in doing doped-SEG → RTA. Reference devices include extensions I/I prior to SEG → HDD I/I → RTA, for both 2D and 3D architectures, with total spacer width prior to silicidation similar for all devices. Gate stack consists of (HfSiON or HfO2)/TiN for logic, 5nm SiO2/TiN for 1T-FBRAM.

Device results and discussion

Fig.3 shows lower IOFF values for extension-less SOI-FinFET devices, consistent with the expected reduced gate overlap. 7nm I/I was used here for all devices under comparison to enable pitch scaling without resist shadowing effects. These devices also exhibit excellent SCE behavior with the IVC-Vth curves in Fig.4 highlighting the lower off-state current obtained with extension-less (SEG → HDD I/I → RTA) vs. reference (Extensions I/I → SEG → HDD I/I → RTA) implant strategies, corresponding to a lower DIBL~36mV/V and SS~70mV/dec. Furthermore, it is important to mention the better quality, defect-free SEG (~less Rsh variability) expected to be obtained when starting from undoped fins [3,5], as is the case with the extension-less I/I approach. An alternative extension-less and I/I-free doping technique is illustrated in Fig.5, where a RTA anneal is used to drive dopants from the in-situ doped-SEG grown on the S/D areas of a bulk-FinFET device. The RTA condition used determines the dopant (As in Fig.5) diffusion profile and resulting doping contours in the top and vertical channels. Benchmarking with reference devices (bulk-FinFETs with conformal doping by I/I), TCAD simulations were performed for assessing the impact of several process parameters changes, such as spacer width variations, on junctions profile and device characteristics. Overall, as expected, before for extension-less devices built with [SEG → HDD I/I → RTA], steeper SS, smaller DIBL, lower IOFF and higher IOFF/IDIBL ratio are also obtained for these I/I-free devices (Figs.6,7). Wider offset (1°) spacers translate into reduced gate overlap and a further increase in the difference for these parameters with regards to the implanted-reference, with a compromise needed to also keep high absolute values for IOFF. Fig.8 shows that increasing the Si-recess depth (10 ~ 40nm) prior to SEG growth leads to higher drive currents due to a more effective fin doping, but at the expense of a reduction in the IOFF/IDIBL ratio and a small (eventually level-offing) DIBL increment.

References

Fig. 1 – Schematic of process flow used for fully-depleted devices fabrication on 300mm wafers: 3D [FinFETs with H_{c},40nm on bulk-Si or SOI(145nm buried oxide)substrates], and 2D [ultra-thin body and BOX (UTBB) planar].

Fig. 2 – Implantation schemes used for FinFET fabrication: a) extension-less devices, with SEM image after raised S/D by Si epitaxial growth (SEG) on undoped fins; b) extensions implanted prior to SEG → HDD I/I.

Fig. 3 – Extension-less devices exhibit lower off-state current down to narrower gates (L_{pax}=35nm). They have narrower I^th spacers but a similar total (I^th+2^th) spacer width prior to silicidation.

Fig. 4 – I_{OFF}-V_{DS} curves of 5-fins NMOS SOI-MuGFET devices. 20x lower I_{OFF} at similar V_{DS} for extension-less (using P HDD I/I) vs. reference devices (fabricated with low-tilt, double-sided As extension I/I & (A=x=P) HDD I/I).

Fig. 5 – On top, schematic of extension-less devices fabrication using in-situ doped-SEG for junction formation. At the bottom, contours of net active doping for two diffusion profiles (RTA) in bulk-FinFET devices.

Fig. 6 – Steeper SS and lower DIBL for extension-less (bulk-FinFET) devices, more so with increasingly wider offset spacers.

Fig. 7 – Lower I_{OFF} and higher DIBL ratio for extension-less (bulk-FinFET) devices, more so with increasingly wider offset spacers.

Fig. 8 – Higher DIBL and drive currents (and lower I_{ON}/I_{OFF} ratio) with increased Si-recess depth prior to doped-SEG growth.

Fig. 9 – TEM image and schematics of fully-depleted planar devices with ultra-thin body (UT-cSi) and ~18nm-thick BOX used for 1T-FBRAM fabrication.

Fig. 10 – Improved DIBL-L_{OFF} for extension-less (P HDD I/I) vs. reference (As extension I/I & (A=x=P) HDD I/I) UTBB planar devices built for 1T-FRAM (~14nm c-Si; ~18nm BOX; gate stack: 5nm SiO_{2}/5nm TiN).

Fig. 11 – X-section TEM images show epitaxial Si growth on the source and drain regions with (on the right) or without (on the left) facets, depending on the spacers shape at the bottom and epi pre-clean used.

Fig. 12 – Lateral electric field simulated in the hold “0” state (V_{G}=0.0V, V_{DS}=50mV) for L_{pax}=70nm UTBB-FBRAM devices. Maximum field lower for extension-less devices with SEG w/o facets.

Fig. 13 – Extension-less UTBB-FBRAM devices show improved retention times (data shown for L_{pax}=70nm). Further improvement expected by using SEG w/o facets.

Fig. 14 – TEM image and schematics of fully-depleted planar devices with ultra-thin body and ~18nm-thick BOX fabricated for logic applications.

Fig. 15 – Lower I_{OFF} for extension-less (UTBB logic) devices, more so with increasingly wider offset spacers. Using SEG w/facets ⇒ higher I_{ON} with 0’tilt HDD-only I/I.

Fig. 16 – Steeper SS and lower DIBL for extension-less (UTBB logic) devices, more so with increasingly wider offset spacers. Using SEG w/facets ⇒ smaller SS and DIBL values with 0’tilt HDD-only I/I.