Experimental Observation of Record-high Electron Mobility of Greater than 1100 cm²V⁻¹s⁻¹ in Unstressed Si MOSFETs and Its Physical Mechanisms

Teruyuki Ohashi^{1,3}, Tsunaki Takahashi^{1,3}, Tetsuo Kodera², Shunri Oda², and Ken Uchida^{1,3}

¹Dept. of Physical Electronics & ²Quantum Nanoelectronics Research Center, Tokyo Institute of Technology

2-12-1-S9-11, Ookayama, Meguro, Tokyo, 152-8552, Japan

³Dept. of Electrical and Electronics Engineering, Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan

*Phone/Fax: +81-3-5734-2542 , E-mail: teruyuki.ohashi@ssn.pe.titech.ac.jp, uchidak@elec.keio.ac.jp

1. Introduction

Electron mobility (μ_e) of bulk Si with low doping concentration is reported to be approximately 1500 cm²V⁻¹s⁻¹ [1]. However, it is well known that μ_e of bulk unstressed Si MOSFETs with extremely low substrate impurity concentration (universal mobility) never exceeds 1000 cm²V⁻¹s⁻¹ [2], even when MOSFETs are fabricated in perfectly controlled manufacturing facilities. Although one might consider that interface states (N_{it}) could be the origin of the lower μ_e , N_{it} is too low to explain the observed μ_e degradation. Therefore, much worse μ_e of Si MOSFETs has been a big mystery.

In this study, $\mu_{\rm e}$ of greater than 1000 cm²V⁻¹s⁻¹ is demonstrated, for the first time, in unstressed Si MOSFETs, where accumulation-mode, body-channel SOI MOSFETs are used [3-5]. It is revealed that worse $\mu_{\rm e}$ in conventional inversion-mode Si MOSFETs is primarily due to larger D_{ac} at Si/SiO₂ interface [6] as well as the larger form factor induced by quantum confinement in 2D electron system.

2. Device structure

Fig. 1(a) shows the schematic of fabricated accumulation-mode, body-channel SOI MOSFETs with the same doping type in channel as that in the source/drain. Since there is no junction, drain current flows through the entire region of SOI layer at voltages around and higher than $V_{\rm FB}$ (Fig. 1(b)). Phosphorus concentration in SOI layer is 5×10^{15} cm⁻³, as is confirmed by SIMS measurement (Fig. 2). $T_{\rm SOI}$ is in the range from 13 to 151 nm.

3. Mobility in body-channel SOI MOSFETs

Fig. 3 shows μ_e of 151 nm-thick, body-channel SOI MOSFET as a function of surface carrier concentration (N_s). The maximum μ_e of 1119 cm²V⁻¹s⁻¹ is clearly confirmed. This is the record-high μ_e in unstressed Si MOSFETs. **Fig. 4** shows bulk Si μ_e as a function of doping concentration [1, 7]. μ_e of body-channel SOI MOSFET measured in this work is also indicated. It is demonstrated that μ_e of thick body-channel SOI MOSFETs is the same as bulk one.

4. Physical Mechanism of Higher Mobility

A. SOI thicknesses dependence

Fig. 5 shows the μ_e of body-channel SOI MOSFETs for various T_{SOI} . μ_e degrades gradually as T_{SOI} decreases from 71 nm. In **Fig. 6**, μ_e of body-channel SOI MOSFETs is compared with that of inversion-channel SOI MOSFETs for T_{SOI} 's of 13 nm and 71 nm. It should be noted that when T_{SOI} is approximately 15 nm, μ_e of body-channel MOSFETs. However, when T_{SOI} is approximately 70 nm, μ_e of inversion-channel MOSFETs. However, when T_{SOI} is lower than that of body-channel MOSFETs. These results are explained by the difference in carrier distribution within the channel (**Fig.** 7). In the 15 nm T_{SOI} case, T_{SOI} is so thin that electron distributions are the same for both the body- and inversion-channel SOI MOSFETs. On the other hand, in the 71 nm T_{SOI} case, electrons populate more closely to the front

MOS interface in the inversion-channel SOI MOSFETs; whereas electrons distribute more uniformly within the SOI layers in the body-channel SOI MOSFETs. These calculation results indicate that higher μ_e in thick body-channel SOI is due to the uniform carrier distribution in the thick body. The uniform carrier distribution may 1) decrease the form factor (a decrease in form factor increases μ_e), 2) decrease the impact of increased D_{ac} at MOS interface [6], and 3) decrease the effect of Coulomb scattering due to interface states. All these effects contribute to enhance μ_e . *B. Deformation Potential* (D_{ac}) *Contribution in High* μ_e

In our previous work [6], we proposed the new D_{ac} model where D_{ac} increases sharply toward the Si/SiO₂ interface (**Fig. 8**). Therefore, average D_{ac} in body-channel SOI MOSFETs was considered to be lower than that in the inversion-channel SOI MOSFETs.

In order to confirm a decrease in average D_{ac} of body-channel MOSFETs, we investigated the strain effects on μ_e for both MOSFETs, since μ_e enhancement ratio $(\Delta \mu_e/\mu_e)$ is proportional to D_{ac} . We applied uniaxial <110> tensile stress parallel to the channel and the μ_e enhancement ratio $(\Delta \mu_e/\mu_e)$ was compared (**Fig. 9**). It is shown that the $\Delta \mu_e/\mu_e$ is smaller in body-channel SOI MOSFETs, indicating that D_{ac} in body-channel SOI MOSFETs is smaller than that in inversion-channel SOI MOSFETs. **Fig. 10** shows the $\Delta \mu_e/\mu_e$ for various substrate biases (V_b) in body-channel SOI MOSFETs. It is shown that $\Delta \mu_e/\mu_e$ is increased as the magnitude of negative V_b increases. This is because the depletion layer induced by V_b reduces the channel thickness, leading to an increase in average D_{ac} .

Finally, the effects of position dependent D_{ac} and wider wavefunction are more quantitatively studied by self-consistent calculations. The position dependent D_{ac} (**Fig. 11**), which is slightly modified from our previous report [6], is used to calculate μ_e of body-channel SOI MOSFETs (**Fig. 12**). It is shown that μ_e of body-channel SOI MOSFET is well reproduced by the model. By using the same D_{ac} model, we also reproduce the μ_e of inversion-channel SOI MOSFETs (**Fig. 13**). **Fig. 14** illustrates experimental and theoretical μ_e as a function of T_{SOI} in inversion-channel SOI MOSFETs [8], showing a good agreement. These results indicate the validity of our D_{ac} model. In other words, the observed record-high μ_e is due to a smaller average D_{ac} and smaller form factor in body-channel SOI MOSFETs.

5. Conclusions

We fabricated the body-channel SOI MOSFETs and observed the record-high μ_e of 1119 cm²V⁻¹s⁻¹ in 151-nm-thick devices. This is due to a unique electron distribution in the body-channel SOI MOSFETs; electron distribute within the entire SOI layer, which leads to a smaller form factor, a smaller average deformation potential (D_{ac}), and less mobility degradation due to Coulomb scattering by N_{it} . From the stress effect on μ_e and the theoretical calculation of μ_e , the above model is confirmed (**Fig. 15**).

Acknowledgements

This research is funded by Cabinet Office, Government of Japan through its "Funding Next Generation Program for World-Leading Researchers"

References

- [1] F. Mousty et al., J. Appl. Phys., 45, 10, 1974.
- S. Takagi et al., IEEE Trans. Electron [2] Devices, 41, 2357, 1994.
- C. W. Lee et al., Solid State Electron, 54, 97, 2010.
- J. P. Colinge et al., Nat. Nanotechnol., [4] 5, 225, 2010.
- N. Kadotani et al., Jpn. J. Appl. Phys., 50, 094101, 2011.
- T. Ohashi et al., IEDM Tech. Dig., [6] 390, 2011.
- J. C. Irvin, Bell Sys. Tech. J., 41, 387, [7] 1962.
- K. Uchida, J. Appl. Phys., 102, [8] 074510, 2007.

Fig. 4: Electron mobility (μ_e) as a Fig. 5: Electron mobility (μ_e) as a function of donor concentration (ND) function of surface carrier concentrain bulk Si. It is firstly demonstrated tion (N_s) for various SOI thicknesses that $\mu_{\rm e}$ of thick body-channel SOI ($T_{\rm SOI}$). It is confirmed that $\mu_{\rm e}$ degrades MOSFET is the same as that of bulk when SOI thickness, T_{SOI} , is less than Si.

Fig. 8: Position-dependent deformation potential (D_{ac}) model proposed in Ref. 6. In bulk Si, Dac takes the position-independent value of 9 eV. On the other hand, in MOS structures, D_{ac} increases sharply at Si/SiO₂ interface. In MOSFETs, electrons are concentrated more at the MOS interface, which leads to an increase in the average D_{ac} for electrons in MOSFETs.

carrier concentration (N_s) characteris- carrier concentration (N_s) characteris- thickness (T_{SOI}) relationship in in- ference. tics in body-channel SOI MOSFET. tics By using our position-dependent D_{ac} MOSFET. The good agreement be- N_s of 6.6×10^{11} cm⁻². By using our served because of 1) smaller electron model, calculated μ_e agrees well with tween calculation and experiment is position-dependent D_{ac} model, cal- density in larger deformation potenexperimental data.

Fig. 1: (a) Schematic of accumulabody-channel tion-mode, SOI MOSFETs. The channel doping type is the same as the source/drain ones. (b) Current components in the device. At a voltage higher than $V_{\rm FB}$, current flows in both the accumulation layer and body channel.

soi 151 nm

110 nm

71 nm

36 nm

13 nm

10¹² N_s (cm⁻²)

Uniaxial Tensile <110> σ_μ

Tensile Stress = 0.065 %

cm

2

Fig. 9: Mobility enhancement ratio

 $(\Delta \mu_{\rm e}/\mu_{\rm e})$ induced by uniaxial tensile stress

for body- and inversion-channel SOI

body-channel SOI MOSFETs suggests

that D_{ac} in body-channel SOI MOSFETs

is smaller than that in inversion-channel

Inversion Channel

10¹³

 N_s (cm⁻²)

inversion-channel

T_{sol}=60 nm

T=300 K

sion-channel SOI MOSFETs.

MOSFETs. The smaller $\Delta \mu_e/\mu_e$

Body Channe

 $T_{\rm SOI}$ =151 nm N_D =5×10¹⁵ cr

Exp. 0

Calc

10¹

00000000

4

 $N_{s} \,({\rm cm}^{-2})$

, cm

6 8

in

Inversion Channel

=60 nm

1000

800

600

400

10¹¹

Mobility (cm²V⁻¹s⁻¹

71 nm.

4

2

-1000

800

600

400

200 L

in

Mobility (cm²V⁻

10¹²

Body Channe

-=300 K

Fig. 2: Phosphorus SIMS profile in Fig. 3: Electron mobility (μ_e) of 151a 150 nm-thick body channel SOI MOSFET. Phosphorus concentration in SOI layer is determined to be $5 \times 10^{15} \text{ cm}^{-3}$.

Fig. 6: Electron mobility (μ_e) for body-channel SOI MOSFETs in comparison with conventional inversion-channel SOI MOSFETs. The difference between two cases is obvious in thicker 70 nm-thick SOI MOSFETs.

Fig. 10: Mobility enhancement ratio $(\Delta \mu_{\rm e}/\mu_{\rm e})$ induced by uniaxial tensile stress in body-channel SOI MOSFETs for various substrate biases (V_b) . It is shown that $\Delta \mu_{\rm e}/\mu_{\rm e}$ increases as the magnitude of negative V_b increases.

nm-thick accumulation-mode, body-channel SOI MOSFETs. The observed μ_e of 1119 cm²V⁻¹s⁻¹ is the highest value among the values reported in unstressed Si MOSFETs.

Fig. 7: Calculated carrier density for body-channel and the inversion-channel SOI MOSFETs. The carriers distribute in the entire SOI layer in 71 nm body-channel SOI MOSFETs, whereas the most carriers are located at the interface in inversion-channel MOSFETs.

Fig. 11: D_{ac} at MOS interface. This position dependent D_{ac} is used to calculate $\mu_{\rm e}$ shown in Fig.12-14.

Fig. 12: Mobility (μ_e) versus surface Fig. 13: Mobility (μ_e) versus surface Fig. 14: Mobility (μ_e) versus SOI Fig. 15: The origin of mobility difbody-channel SOI In SOI version-channel SOI MOSFETs at MOSFETs, higher mobility is obalso confirmed in conventional, inver- culated μ_e agrees very well with ex- tial region, 2) smaller form factor, perimental data over a wide range of and 3) less influence of interface states