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Acoustic-phonon scattering is considered to play
a dominant role in determining electron mobility in
ultra-thin silicon-on-insulator and nanowrire struc-
tures, because in the elastic and equipartition approx-
imation the scattering rate increases as a power func-
tion with decreasing the lateral dimension. The strong
spatial confinement of electrons in ultra-thin struc-
tures, however, leads to an expansion in k-space, which
makes the usual elastic approximation questionable.
Here I present a theoretical calculation of acoustic-
phonon scattering rate in ultra-thin structures without
using the elastic approximation.

I consider two-dimensional electron gas (2DEG) in
a Si slab of the thickness t and 1DEG in a Si nanowrire
(Si NW) of the diameter D (= 2R). For ultra-thin struc-
tures, electrons mainly occupy the lowest subband. I
thus calculate the acoustic-phonon scattering rate only
within the lowest subband. Using the Fermi’s golden
rule, the scattering rate is given by
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where W+(Ei) (W−(Ei)) is the absorption (emission)
rate of an initial electron energy Ei, D the deforma-
tion potential constant, ρ the mass density, V the crys-
tal volume, ωq = slq the phonon frequency, sl the
longitudinal sound velocity, q the magnitude of the
phonon wavevector, Nq the phonon occupation factor,
and i ( f ) the initial (final) electronic state index. In
the present study, I am interested in the impact of the
elastic approximation on the acoustic-phonon scatter-
ing rate, and consider only electron–bulk-longitudinal-
acoustic-phonon scattering within an isotropic defor-
mation potential approximation.

By using the elastic and equipartition approxima-
tion, the absorption rate becomes equal to the emission
rate, and we have
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for 2DEG, and
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for 1DEG. Here kT is the thermal energy, cl the elastic
constant, md the density-of-states mass, ξ0 the lateral
wavefuncion associated with the quantized motion, and
f = 0.67. Effects of the elastic approximation are
studied by comparing the scattering rates calculated
through Eq. (1) with those through Eqs. (2) and (3).

Figure 1 shows normalized scattering rates as a func-
tion of the slab thickness t for Ei = kT at T = 300 K.
The normalized scattering rate is defined by the scat-
tering rate of Eq. (1) normalized by the correspond-
ing scattering rate of the elastic approximation. In the
limit of vanishing thickness, all the phonon wavectors
perpendicular to the slab equally participate the scatter-
ing in the elastic approximation. Phonons with larger
wavectors, however, cannot contribute to the scatter-
ing when one include finite phonon energy because of
large phonon energy. This results in the strong reduc-
tion in the normalized scattering rate for thinner re-
gions. This reduction occurs when t <∼ 4π~sl/Ei (see
Fig. 2). Therefore, one can safely use the elastic ap-
proximation only for thicker slab and higher electron
energy. In the limit of t → 0, I find that the scattering
rate remains finite on the contrary to the elastic approx-
imation (see Fig. 3).

Figures 4, 5, and 6 show the results for Si NWs. I
find that resonant phonon emission occurs when D ≈
2π~sl/Ei (see Fig. 5). It originates in the singular na-
ture of the density-of-states at the bottom of the sub-
band. Because of this resonance, the elastic approxi-
mation underestimates the scattering rate near the res-
onant condition. This is marked contrast to the 2DEG
case where the elastic approximation overestimates the
scattering rate. We see that the elastic approximation
can be safely used only for thicker diameter and larger
electron energy as in the 2DEG case (see Fig. 5).
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Figure 1: Normalized scattering rates as a function of the
slab thickness t for Ei = kT at T = 300 K.
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Figure 2: Normalized total scattering rates as a function of
t for Ei = kT/2, kT , and 2kT . Vertical arrows show the
condition of t = 4π~sl/Ei.
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Figure 3: Slab-thickness dependence of the scattering rate
normalized by W0 of the elastic approximation at t = 10 nm.
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Figure 4: Normalized scattering rates as a function of the
NW diameter D for Ei = kT at T = 300 K.
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Figure 5: Normalized total scattering rates as a function of
D for Ei = kT/2, kT , and 2kT . Vertical arrows show the
condition of D = 2π~sl/Ei.
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Figure 6: NW-diameter dependence of the scattering rate
normalized by W0 of the elastic approximation at D =

10 nm.
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