AlGaN/GaN-on-Sapphire MOS-HEMTs with Breakdown Voltage of 1400 V and On-State Resistance of 22 mΩ.cm² using a CMOS-Compatible Gold-Free Process

Xinke Liu,¹ Chunlei Zhan,¹ Kwok Wai Chan,² Wei Liu,³ Dong Zhi Chi,⁴ Leng Seow Tan,¹ Kevin Jing Chen,² and Yee-Chia Yeo.^{1*}

¹Dept. of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore.

² Dept. of Electrical and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong.

³Luminous! Centre of Excellence for Semiconductor Lighting and Displays, Nanyang Technological University, 639785 Singapore.

⁴ Institute of Materials Research and Engineering, Agency for Science Technology and Research, 117602 Singapore.

*Phone: +65 6516-2298, Fax: +65 6779-1103, E-mail: yeo@ieee.org

1. Introduction

AlGaN/GaN Metal-Oxide-Semiconductor High-Electron Mobility Transistors (MOS-HEMTs) are attractive for high power However, most of the AlGaN/GaN electronic applications. devices reported in the literature were fabricated using a non-goldfree process, where gold was used either as gate or source/drain contacts [1]-[9]. In order to fabricate GaN devices in Si fabs without gold contamination, CMOS-compatible gold-free processes for fabricating AlGaN/GaN devices are needed. In addition, different approaches were proposed to reduce the gate leakage current I_G , such as inserting a gate dielectric under the gate ($I_G \sim 5 \times 10^{-10}$ A/mm) [10] and O₂ plasma treatment ($I_G \sim 6 \times 10^{-9}$ A/mm) [11].

In this paper, we report the realization of AlGaN/GaN-onsapphire MOS-HEMTs with off-state breakdown voltage V_{BR} of 1400 V and on-state resistance R_{on} of 22 m Ω .cm² using a CMOScompatible gold-free process. In addition, devices achieved high on/off current ratio \bar{I}_{on}/I_{off} of 10⁹ and low I_G of 10⁻¹¹ A/mm. Compared to those of gold-free AlGaN/GaN MOS-HEMTs reported in literature, the V_{BR} achieved in this work is the highest.

2. Device Fabrication: CMOS-Compatible Gold-Free Process

Fig. 1 shows a gold-free process flow for fabricating the AlGaN/GaN-on-sapphire MOS-HEMTs with a TaN metal gate. 2inch undoped Al_{0.25}Ga_{0.75}N(25 nm)/i-GaN(2.7 µm)/Fe-doped GaN (300 nm) epitaxial layers on sapphire substrate was used. After mesa etching using Cl₂-based reactive ion etching, 10 min native oxide removal using dilute HCl (HCl: $H_2O = 1:1$) and 30 min ex situ surface passivation treatment using (NH₄)₂S solution were performed.

An Al₂O₃ gate dielectric (15 nm) was deposited by Atomic Layer Deposition. Post Deposition Anneal (PDA) at 450 °C for 60 s in N₂ ambient was then performed, followed by reactive sputter deposition of TaN metal and gate patterning using Cl₂-based dry etching. The gate stack formation is CMOS-compatible. A Pt(100 nm)/Ti(10 nm)/Al(120 nm)/Ti(20 nm) metal stack was deposited and patterned in the source/drain contact regions. An alloying process at 650 °C for 30 s in N2 ambient was used to form ohmic contacts.

3. Results and Discussion

Fig. 2 shows the schematic view of an AlGaN/GaN-onsapphire MOS-HEMT. Gate-to-drain spacing and gate-to-source spacing are defined as L_{GD} and L_{GS} , respectively. Fig. 3 (a) and (b) show linear I-V characteristics of the fabricated transmission line method (TLM) test structure, sheet resistance R_{sh} of 527 Ω /square and specific contact resistivity ρ_c of $4.5 \times 10^{-3} \Omega.\text{cm}^2$ was obtained.

Fig. 4 shows the gate leakage current density J_G as a function of gate voltage V_G . J_G is capped at ~10⁻⁵ A/cm² for V_G from 0 to -20 V. Fig. 5 shows the transfer $(I_D - V_G)$ and transconductance $(g_m - V_G)$ V_G) characteristics of an AlGaN/GaN MOS-HEMT ($L_G = 2 \mu m$, and $L_{GS} = L_{GD} = 5 \ \mu\text{m}$). Sub-threshold swing S, peak g_m at $V_D = 5$ V, and threshold voltage V_{th} are 89 mV/decade, 20.4 mS/mm and -2.6 V, respectively. Fig. 6 shows output $(I_D - V_D)$ characteristics of the same AlGaN/GaN MOS-HEMT shown in Fig. 5, where V_G is varied in steps of 1 V from -2 V to 2 V.

Fig. 7 shows sub-threshold swing S (left axis) and I_{on}/I_{off} ratio (right axis) as a function of gate leakage current I_G for AlGaN/GaN MOS-HEMTs ($L_G = 2 \ \mu m$, and $\tilde{L}_{GS} = L_{GD} = 5 \ \mu m$). I_{on} and I_{off} are defined to be the values of I_D measured at $V_G = (V_{th})$ For and I_{off} are defined to be the values of I_D measured at $V_G = (V_{th} + 4)$ V and $(V_{th} - 7)$ V, respectively, at $V_D = 5$ V. I_G is the gate leakage current at $V_G = (V_{th} - 7)$ V and $V_D = 5$ V. I_{on}/I_{off} and I_G is in the range of $1.67 \times 10^8 \sim 2.89 \times 10^9$ and $3.77 \times 10^{-11} \sim 1.15 \times 10^{-10}$ A/mm, respectively. Fig. 8 and 9 show the dependence of on-state resistance R_{on} , on-state drain current $I_{D,on}$ at $V_D = 1$ V, and off-state current $I_{D,off}$ at $V_D = 1$ V on the gate-to-drain spacing L_{GD} , where the gate length L_G of 2 µm and the gate-to-source spacing L_{GS} of 5 μ m are fixed. As L_{GD} increases from 5 μ m to 20 μ m, average R_{on} is increased from 10 to 22 m Ω .cm²; $I_{D,on}$ is reduced by 5%; $I_{D,off}$ is reduced from 6.2×10⁻¹⁰ to 4.5×10⁻¹¹ A/mm.

Fig. 10 shows the results of a three terminal off-state high voltage measurement in Fluorinert ambient. Below $V_D = 900$ V, the value of I_D and I_S are almost equal, and the value of I_G is around 1 to 2 orders of magnitude lower than those of I_D and I_S . Above $V_D = 900$ V, I_G starts to increase and eventually reaches almost the same value as I_D , while I_S still remains constant. Above V_D = 900 V, I_D is dominated by I_G , which indicates that the breakdown occurs in the gate region. Mechanism of breakdown could be due to an avalanche breakdown or impact ionization at the drain side of the gate edge [12]. I_D remains ~ 8 × 10⁻⁶ A/mm when V_D is increased up to 1400 V. Breakdown voltage V_{BR} is defined as the value of V_D at which I_D reaches 1 mA/mm with the gate biased below V_{th} . Fig. 11 and 12 show a comparison of V_{BR} versus R_{on} , and V_{BR} versus L_{GD} between this work and other stateof-the-art AlGaN/GaN MOS-HEMTs [13]-[15].

4. Summarv

AlGaN/GaN-on-sapphire MOS-HEMTs with VBR of 1400 V and R_{on} of 22 m Ω .cm² were realized using a CMOS-compatible gold-free process. Process modules commonly used in CMOS fabrication were used, including TaN gate stack formation, etching modules, etc. Compared to those of gold-free AlGaN/GaN MOS-HEMTs, the V_{BR} achieved here is the highest.

Acknowledgement. This work was supported by the Singapore Defense Science and Technology Agency (POD0814040), and Agency for Science, Technology and Research (SERC1021500058), Singapore.

References

- [1] K. Ota et al., IEDM 2009, pp. 153, 2009.
- [2] R. Chu et al., IEEE Elect. Dev. Lett., vol. 32, pp. 632, 2011.
- [3] B. Lu et al., IEEE Elect. Dev. Lett., vol. 31, pp. 951, 2010.
- [4] Y. Dora et al., IEEE Elect. Dev. Lett., vol. 27, pp. 713, 2006.
- [5] N. Tipirneni *et al.*, *IEEE Elect. Dev. Lett.*, vol. 27, pp. 716, 2006.
 [6] E. B. Treidel *et al.*, *IEEE Trans. Elect. Dev.*, vol. 57, pp. 3050, 2010.
- [7] J. Derluyu et al., IEDM 2009, pp. 157, 2009.
- [8] E. B. Treidel et al., IEEE Trans. Elect. Dev., vol. 57, pp. 1208, 2010.
- [9] W. Saito et al., IEEE Trans. Elect. Dev., vol. 53, pp. 356, 2006.
- [10] P. Kordos et al., Appl. Phys. Lett., vol. 87, pp. 143501, 2005.
- [11] J. W. Chung et al., IEEE Elect. Dev. Lett., vol. 29, pp. 1196, 2008.
- [12] J. Joh et al., Microelectron. Reliab., vol. 50, pp. 767, 2010.
- [13] Y. Uemoto et al., IEDM 2006, pp. 907, 2006.
- [14] H.-S. Lee et al., IEEE Elect. Dev. Lett., vol. 32, pp. 623, 2011.
- [15] X. Liu et al., Appl. Phys. Express, vol. 5, 066501, 2012.

 AlGaN/GaN epi wafer on Al₂O₃ substrate
 Active region formation using RIE (Cl₂-based)
 Gate stack formation: Acetone, IPA, HCl, (NH₄)₂S ALD Al₂O₃ deposition and PDA TaN Gate deposition and patterning
 Pt/Ti/Al/Ti deposition and patterning
 Ohmic contact alloying (650 °C, 30 s)

Fig. 1. Gold-free process flow for fabricating AlGaN/GaN-on-sapphire MOS-HEMTs with a TaN metal gate.

Fig. 4. Gate leakage current density J_G as a function of gate voltage V_G , when source and drain are grounded. In the negative gate voltage regime, J_G is capped at ~10⁻⁵ A/cm².

Fig. 7. Subthreshold swing *S* (left axis) and I_{on}/I_{off} ratio (right axis) as a function of gate leakage current I_G for AlGaN/GaN MOS-HEMTs ($L_G = 2 \ \mu m$ and $L_{GS} = L_{GD} = 5 \ \mu m$).

Fig. 10. I_S , I_G , and I_D as a function of V_D for three terminal off-state measurement in Fluorinert ambient ($L_G = 2 \ \mu m$, $L_{GS} = 5 \ \mu m$, and $L_{GD} = 20 \ \mu m$), where $V_S = 0 \ V$ and $V_G = -10 \ V$. The drain current I_D is below 1 mA/mm when $V_D = 1400 \ V$.

Fig. 2. Schematic view of an AlGaN/GaN-on-sapphire MOS-HEMT.

Fig. 5. Transfer $(I_D - V_G)$ and transconductance $(g_m - V_G)$ characteristics of AlGaN/GaN MOS-HEMT ($L_G = 2 \mu m$ and $L_{GS} = L_{GD} = 5 \mu m$). Sub-threshold swing *S* is 89 mV/decade, peak g_m is 20.4 mS/mm at $V_D = 5$ V, and threshold voltage V_{th} is -2.6 V.

Fig. 8. On-state resistance R_{on} of AlGaN/GaN MOS-HEMTs ($L_G = 2 \mu m$ and $L_{GS} = 5 \mu m$) as a function of gate-to-drain spacing L_{GD} .

Fig. 11. Breakdown voltage V_{BR} versus onresistance R_{on} of fabricated AlGaN/GaN MOS-HEMTs, as compared to those of state-of-theart AlGaN/GaN MOS-HEMTs. (Open symbol: GaN MOS-HEMTs with gold; Solid symbol: GaN MOS-HEMTs without gold. Square: GaN-on-sapphire; Triangle: GaN-on-SiC; Circle: GaN-on-silicon)

Fig.3. (a) Current-voltage (*I-V*) characteristics at various contact spacing *d*. (b) Contact resistance R_T as a function of various contact spacing *d* on the TLM structure after annealing at 650 °C for 30 s.

Fig. 6. Output $(I_D - V_D)$ characteristics of the same AlGaN/GaN MOS-HEMT used in Fig. 5, where V_G is varied in steps of 1 V from -2 V to 2 V.

Fig. 9. $I_{D,on}$ and I_{Droff} of AlGaN/GaN MOS-HEMTs ($L_G = 2 \mu m$ and $L_{GS} = 5 \mu m$) as a function of gateto-drain spacing L_{GD} . $I_{D,on}$ and I_{Droff} are defined to be the values of I_D measured at $V_G = 1$ V and -10 V, respectively, at $V_D = 1$ V.

Fig. 12. Breakdown voltage V_{BR} versus gate-todrain spacing L_{GD} of fabricated AlGaN/GaN MOS-HEMTs, as compared to those of state-of-the-art AlGaN/GaN MOS-HEMTs. (Open symbol: GaN MOS-HEMTs with gold; Solid symbol: GaN MOS-HEMTs without gold. Square: GaN-onsapphire; Triangle: GaN-on-SiC; Circle: GaN-onsilicon)