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1. Introduction 

Passivation of an AlGaN/GaN heterostructure is es-
sential to improve the surface states which can cause the 
leakage current and current collapse. Generally, passiva-
tion layers are grown separately with epi-layers (ex-situ). 
It was also reported that an in-situ grown SiNx layer is 
more effective in passivating the surface of the Al-
GaN/GaN HEMT, because epi-layers are protected during 
processing [1]. 

Protection diodes were used to protect the device dur-
ing IC operations, like class-S switch mode amplifier and 
power switching ICs. There are some researches on Al-
GaN/GaN HEMT with an integrated Schottky-drain pro-
tection diode [2], [3]. The problem of this approach is a 
reduced drain current due to the voltage drop and resis-
tance of a Schottky-drain diode. 

In this study, we demonstrated the AlGaN/GaN HEMT 
with an in-situ deposited silicon carbon nitride (SiCN) cap 
layer for improved electrical characteristics. Self protected 
HEMT with a reverse drain blocking capability were also 
demonstrated on SiCN cap layer. 

2. AlGaN/GaN HEMT with a SiCN cap layer 
(SiCN-HEMT) 

AlGaN/GaN heterostructure with the in-situ SiCN cap 
layer proposed in this paper was grown on 4-in (0001) 
c-plane sapphire substrates using MOCVD [4]. TMGa, 
TMAl, CBr4, DTBSi, and NH3 were used for the precur-
sors for Ga, Al, C, Si, and N, respectively. The layer 
structure consists of a 30-nm-thick low temperature (LT) 
GaN initial nucleation layer, a 3-m-thick highly resistive 
GaN buffer layer, a 25-nm-thick Al0.27Ga0.73N barrier, and 
a 5-nm-thick SiCN cap layer in growth sequence. All lay-
ers except the LT-GaN nucleation layer were grown at 
1100 C. A conventional AlGaN/GaN heterostructure 
without the SiCN cap layer was grown for comparison. 

Root-mean-square roughness of the surface with and 
without SiCN cap layer was 0.48 and 0.50 nm, respec-
tively. Hall measurement data for AlGaN/GaN hetero-
structure with and without SiCN cap layer are summarized 
in table 1. 2DEG carrier concentration was increased 
about 51 % with SiCN cap layer. Possible reason for the 
increase of 2DEG concentration is the positive interface 
ionic charges generated during the growth of the SiCN cap 
layer, such as Si+ [5]. The Si atoms located at the 
SiCN/AlGaN interface act as positively charged ionized 
donors and hence partially neutralize the negative polari-
zation charges of the AlGaN surface, which thereby in-

creases the 2DEG density to satisfy the charge neutrality 
[4]. 

 
Fig. 1. Schematic sketch of the fabricated SiCN-HEMT 

Sample 
Without 

SiCN 
With SiCN 5 

nm 

2DEG mobility  (cm2/V·s) 1593 1270 

Carrier concentration ns 
(1012/cm2) 

7.79 11.77 

 · ns (1012/V·s) 12406.8 14943.7 

Table 1. Hall measurement data for samples with and 
without the SiCN cap layer 

Device mesa isolation was performed using BCl3/Cl2 
mixture by inductively coupled plasma reactive ion etch-
ing (ICP-RIE). After cleaning with piranha and diluted HF 
(1:10) for 10 min, 30-nm-thick SiNx layer was deposited 
using inductively coupled plasma chemical vapor deposi-
tion (ICP-CVD) at 350 C. Ohmic contact metals of 
Si/Ti/Al/Mo/Au (5/20/80/35/50 nm) were deposited and 
followed by thermal annealing at 820 C for 30 s in N2 
ambient. The measured contact resistance and sheet resis-

tance were 0.25 Ω·mm and 368 Ω/sq, respectively. Next, 
wet etching was used to etch the gate window, because 
SF6 gas plasma can etch the SiCN cap layer. The next pat-
terning process defined the gate and gate field plates. Fi-
nally, Ni/Au (20/380 nm) was deposited as a gate metal. 

A schematic sketch of the fabricated GaN HEMT is 
shown in Fig. 1. The gate length (LG) and gate field plate 
length were 2 m. The gate-to-source distance (LGS) and 
gate-to-drain distance (LGD) was 3 and 15 m, respectively. 
Table 2 and figure 2 show the measured output characte-
ristics of fabricated HEMTs with respect to thickness of 
the SiCN cap layer. Maximum drain current was increased 
15 % in SiCN-HEMT compared with the reference HEMT. 
Maximum transconductance was also increased 10 %, 
even though gate-to-channel distance was increased by the 
SiCN layer thickness. The reason for these improvements 
in SiCN-HEMT is due to the increase of the carrier con-
centration. The decrease of gate leakage current in 

-885-

Extended Abstracts of the 2012 International Conference on Solid State Devices and Materials, Kyoto, 2012, pp885-886

F-5-2



SiCN-HEMT can be explained by the reduction of a 
tunneling current as explained in [4]. 

Ohmic-drain Schottky-drain 

SiCN cap 
layer 

none 5 nm none 5 nm 

IDS, Max 

(mA/mm) 
453.0 523.2 443.2 486.2 

Gm, Max 

(mS/mm) 
130.2 143.8 133.3 142.5 

IG at VGS = -6 
V (A/mm) 

79.2 24.9 73.8 13.3 

Table 2. Summary of output characteristics fabricated 
HEMTs 

3. AlGaN/GaN HEMT with an integrated Schottky-
drain protection diode 

Purpose of the HEMT with a protection diode is to 
suppress a current flow in the HEMT during reverse bias 
conditions. GaN integrated Schottky-drain protection di-
ode is promising, because GaN SBDs show high switch-
ing speed with low on resistance and large forward current. 
Major problem in integrated Schottky-drain protection 
diode is the knee voltage due to the voltage drop in 
Schottky contact at drain. 

We fabricated the HEMT with an integrated 
Schottky-drain protection diode. Measured output values 
of the AlGaN/GaN HEMT with Schottky-drain protection 
diode are shown in table 2 and figure 3. Maximum drain 
current and transconductance of the SiCN-HEMT with a 
Schottky drain were increased by 10 % and 7 %, respec-
tively. Moreover, gate leakage current is reduced in 
Schottky-drain HEMT compared with ohmic-drain HEMT. 
However, Schottky-drain causes the decrease of maximum 
drain current 7 %, compared with an ohmic-drain HEMT. 
This is because a Schottky-drain has a higher contact re-
sistance than an ohmic-drain. It is encouraging that the 
drain current can be increased with a SiCN cap layer, even 
protection diode was integrated. Turn on voltage of the 
Schottky-drain diode was 0.7 V for both with and without 
SiCN cap layer. 

The reverse drain current in the on-state (VGS = 0 V) 
and the threshold state (VGS = -4 V) are shown in Fig. 4. It 
shows the reverse blocking capability over -100 V for both 
on and threshold state of the Schottky-drain diode. It was 
expected that a lower knee voltage due to the lower 
Schottky barrier height of SiCN-SBDs [4]. However, there 
was not a noticeable difference in a knee voltage with and 
without SiCN cap layer, as shown in Fig. 3. Thus, further 
studies are needed to lower the knee voltage. 

4. Conclusion 
Electrical characteristics of AlGaN/GaN HEMT with 

in-situ deposited SiCN cap layer were improved. The 
SiCN cap layer effectively increases the 2DEG density of 
AlGaN/GaN heterostructure. Fabricated HEMT shows the 
enhanced drain current and transconductance without sa-
crificing the gate leakage current. 

Self-protected HEMT with an integrated 
Schottky-drain diode was also demonstrated. Drain cur-
rent and gate leakage current of the HEMTs with a SiCN 

cap layer are also improved like an ohmic-drain HEMT. 
The reverse blocking capability was over -100 V. 
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Fig. 2(a). Transfer characteristics and transconductance 
curve of the fabricated Schottky HEMT (VDS = 10 V) 
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Fig. 2(b). Family curve of fabricated Schottky HEMT 
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Fig. 3. Family curve of fabricated Schottky-drain HEMT 
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Fig. 4. Reverse blocking capability due to the integrated 

protection diode 
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