# Lateral High-Voltage 4H-SiC IGBTs

Wen-Shan Lee<sup>1</sup>, Chi-Yin Cheng<sup>1</sup>, Kuan-Wei Chu<sup>1</sup>, Chih-Fang Huang<sup>1\*</sup>, Feng Zhao<sup>2</sup>, Lurng-Shehng Lee<sup>3</sup>, Young-Shying Chen<sup>3</sup>, Chwan-Ying Lee<sup>3</sup>, and Min-Jinn Tsai<sup>3</sup>

<sup>1</sup>Institute of Electronics Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC

\*Phone: 886-3-5742438, Fax: 886-3-5752120, Email: cfhuang@ee.nthu.edu.tw

<sup>2</sup>School of Engineering and Computer Science, Washington State University, Vancouver, WA 98683, USA

<sup>3</sup>Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hisnchu, Taiwan, ROC

## 1. Introduction

Due to the unique properties such as wide band gap, high breakdown field, and high saturation velocity, silicon carbide is suitable for high-temperature, high-power, and high-frequency applications. For high-voltage applications, it is desirable to use a bipolar device to reduce the conduction loss because of the conductivity modulation in the long drift region. In this paper, a 4H-SiC lateral high-voltage n-channel IGBT on a semi-insulating substrate is demonstrated. Various process improvements, such as N<sub>2</sub>O annealing, lifetime enhancement, were conducted in order to obtain better forward characteristics. The temperature dependence of the device characteristic was also investigated. The differential on-resistance exhibits an negative temperature dependence, whereas the common base current gain  $\alpha_{pnp}$  of the parasitic pnp BJT have a complicated temperature dependence because it is affected by carrier mobility, carrier lifetime, and the ionization percentage of the p+ collector.

## 2. Device Structure and Experiment Result

## Device Structure

The proposed lateral IGBT, as shown in Fig. 1, was fabricated on a p-type epilayer on a 4H-SiC semi-insulating wafer with an n-buffer layer placed between p+ collector and p epilayer to prevent vertical punch-through. Tab. 1 summarizes the structures and process parameters of three devices to be compared. Different drift region lengths  $L_d =$ 20, 40, 80 µm, were used. By comparing the devices, the influences of lifetime and the doping of n-buffer dose, which affects the injection efficiency of p-collector, will be examined. The p-epilayer is  $2\mu m/5 \times 10^{16} cm^{-3}$ . The drift region was formed by implantation of nitrogen with doses of 1×10<sup>13</sup> cm<sup>-2</sup> into p-type epilayer. Emitter and collector were made by implantation of phosphorus and aluminum at 650 °C, respectively. Following the implantation and mesa trench isolation, a two-step lifetime enhancement process proposed by reference [1] was carried out. First, by thermal oxidation of 4H-SiC at 1150 °C for one hour, followed by an additional annealing in Ar at 1700 °C for 10 minutes. Activation for all implanted species was also completed at the same time. Thus, the concentrations of the major deep levels are expected to reduce with the two-step thermal treatment, resulting in an improvement of carrier lifetime. Graphite cap was used during annealing to preserve good surface morphology. After RCA clean, a 700 Å gate oxide

was deposited, followed by an N<sub>2</sub>O annealing. Contact metal consisting of 20 nm Ti and 100 nm Ni was used for the n+ contact. A layer of 20 nm Ti, 120 nm Al, and 100 nm Ni was employed for the p+ contact. Then, a rapid thermal annealing was done at 1150 °C for 3 minutes in vacuum to sinter these contact metal. Ti/Al of 20 nm/350 nm was deposited and lifted off to form gate electrode. Finally, both contact and gate metal was covered by a pad metal composed of Ti/Al of 20 nm/480 nm for probe testing.

# Experiment Results

The channel mobility are measured at a  $V_{ds}$  of 0.1 V from a test MOSFET with channel length  $L_{ch} = 100 \ \mu m$ . The measured field effect mobility at room temperature is 25 cm<sup>2</sup>/Vs. Fig. 2 illustrates the on-state and blocking characteristic of an IGBT with W = 842  $\mu$ m, L<sub>ch</sub> = 5  $\mu$ m, L<sub>d</sub> =  $80 \mu m$ , as shown in the inset in Fig. 2. The device shows a threshold voltage of 2.9 V. The specific differential on-resistance extracted at  $V_g = 30$  V and  $V_{ce} = 4$  V is found to be 425 m $\Omega$ -cm<sup>2</sup> and the breakdown voltage is 2670 V at a current exceeds 10 µA. Fig. 3 shows the saturation collector current (Ic,sat) and saturation transconductance  $(g_{m,sat})$  of an IGBT with  $L_d$  of 20  $\mu m$  as a function of gate bias. It is clear that both  $g_{m,sat}$  and  $I_{c,sat}$  of IGBT are increased by the parasitic BJT with a factor of  $(1-\alpha_{pnp})^{-1}[2]$ , compared to its MOSFET counterpart. The  $\alpha_{pnp}$  is estimated to be 0.31 at a  $V_{ce}$  of 100 V and a  $V_g$  of 20 V. The forward I-V characteristic of IGBT and MOSFET at 200 °C is illustrated in Fig. 4. Fig. 5 compares the differential on-resistance of a MOSFET and an IGBT at a Vg of 30 V at room temperature and 200 °C. The differential on-resistance exhibits a negative temperature dependence. At room temperature, the differential resistance of IGBT is lower than that of MOSFET when I<sub>c</sub> is larger than 15 mA, indicating the injection of minority carriers. The crossover current is reduced to 3.7 mA at 200 °C, which is attributed to the increase in minority carrier lifetime in drift region at high temperatures. From the measurement results, a device with a lower doping buffer (better injection efficiency), a shorter base and an increased lifetime (better base transport factor) has the highest  $\alpha_{pnp}$  among all the conditions.  $\alpha_{pnp}$ has a small and complicated temperature dependence because the important factors such as the carrier lifetime, the carrier mobility, and p+ collector have different temperature dependence .

#### 3. Conclusion

Lateral high-voltage 4H-SiC IGBTs are fabricated and characterized. The specific differential on-resistance is 425 m $\Omega$ -cm<sup>2</sup> and the breakdown voltage is 2670 V for a device with 80  $\mu$ m drift region. Drift region length, buffer doping, and lifetime improvement are important for the parasitic BJT's function. With a better design, the differential on-resistance of an IGBT can be lower than that of a MOSFET, and is further reduced at higher temperatures.

#### Acknowledgement

This work is supported by National Science Council of Taiwan, R. O. C. under Contract No. 100-2221-E-007-025 and No. 99-2221-E-007-122

# References

[1] T. Hiyoshi et al., Appl. Phys. Exp. 2 (2009) 091101

[2] J. Baliga, "Power Semiconductor Devices," PWS Co., 1995



Fig. 1 Lateral 4H-SiC IGBTs on a semi-insulating substrate

| Group name /<br>parameters | Buffer<br>dose(cm <sup>-2</sup> ) | Lifetime<br>improvement | Channel<br>length(µm) | Single-zone<br>drift region(µm) |    |    |
|----------------------------|-----------------------------------|-------------------------|-----------------------|---------------------------------|----|----|
| IGBT 1                     | Lighter<br>3x10 <sup>13</sup>     | Yes                     | 5                     | 20                              | 40 | 80 |
| IGBT 2                     | Lighter<br>3x10 <sup>13</sup>     | -                       | 5                     | 20                              | 40 | 80 |
| IGBT 3                     | Heavier<br>6x10 <sup>13</sup>     | Yes                     | 5                     | 20                              | 40 | 80 |

Tab. 1 Structures and parameters of lateral IGBTs with different designs



Fig.2 Forward and blocking characteristics of a lateral IGBT (group IGBT1) with  $L_{ch}$  of 5  $\mu$ m and  $L_{d}$  of 80  $\mu$ m. The inset shows the photograph of the fabricated IGBT.



Fig.3 Comparisons of  $I_{c,sat}$  and  $g_{m,sat}$  versus  $V_g$  between an IGBT (group IGBT1) and a MOSFET with a  $L_{ch}$  of 5  $\mu$ m and a  $L_d$  of 20  $\mu$ m.



Fig.4 I-V characteristics of an IGBT (group IGBT1) and a MOSFET with an L<sub>d</sub> of 20  $\mu$ m at 200 °C.



Fig. 5 The differential on-resistance of a MOSFET and an IGBT at a  $V_g$  of 30 V (a) at room temperature and (b) at 200 °C.