MIM Capacitors with High Capacitance Density and Low Quadratic Voltage Coefficient Employing Canceling Effect by ZrLaO_x/ZrTiO_x/ZrLaO_x Laminate Insulator

Lun-Lun Chen, Yu-Bo Lin, Chia-Chun Lin, You-Tai Chang, and Yung-Hsien Wu*

Department of Engineering and System Science, National Tsing-Hua University, 300, Hsinchu, Taiwan Phone:+886-3-516-2248 Email: <u>yunhwu@mx.nthu.edu.tw</u>

I. Introduction

For the past few years, metal-insulator-metal (MIM) capacitors have attracted intensive attention because of the wide applications for radio frequency (rf) and analog/mixed signal circuits. According to ITRS, the quadratic voltage coefficient of capacitance (VCC- α) <100 ppm/V² and capacitance density >12 fF/ μ m² are required for the RF passive technology by 2020. Although many high-permittivity (high- κ) dielectrics have been explored for MIM capacitors with capacitance density higher than 20 fF/ μ m², VCC- α less than 100 ppm/V² has been rarely achieved. Increasing the dielectric thickness is an effective way to improve the VCC- α , however, it comes at the price of degrading capacitance density. Recently, stacking two dielectrics respectively with a positive and a negative VCC- α has been proposed as a promising avenue to obtain a desirable VCC- α without sacrificing the capacitance density due to the so-called "canceling effect" [1]. To adopt this effect, it is prerequisite to find out a proper dielectric with negative VCC-α. However, most dielectrics demonstrate the characteristics of a positive VCC- α . Currently, SiO₂ is a well-known dielectric with a negative VCC- α and has been widely integrated with HfO₂ [1], Sm₂O₃ [2] or TiO₂ [3], attempting to implement high-performance MIM capacitors. Unfortunately, because of the relatively low κ value of SiO₂, achieving capacitance density larger than 12 fF/ μ m² while preserving an acceptable VCC-a is very challenging. Nevertheless Y_2O_3 with a higher κ value than SiO₂ has recently been reported to possess a negative VCC- α , the performance of Y₂O₃/HfTiO-based MIM capacitors [4] still has room to improve. In this work, $ZrTiO_x$ with even higher κ value was found to have a negative VCC-α and its application for MIM capacitors was investigated. By integrating $ZrTiO_x$ with $ZrLaO_x$ [5] which corresponds a positive VCC- α , MIM capacitors enjoying a high capacitance density of 14.6 fF/ μ m² and a low VCC- α of 33 ppm/V² has been realized and holds promising prospects to be used for next-generation high-performance MIM capacitors.

II. Experiment

Prior to the fabrication of MIM capacitors, a 500-nm SiO₂ was thermally grown on Si wafer as the isolation layer. Then, the TaN layer of 200 nm was deposited as the bottom electrode. The dielectric of $ZrLaO_x$ (5 nm)/ZrTiO_x (5 $nm)/ZrLaO_x$ (5 nm) laminate was sequentially deposited by electron beam evaporation. To understand the electrical behavior and extract κ value of respective dielectric, single $ZrTiO_x$ or $ZrLaO_x$ of 10 or 15 nm was deposited on some samples. Afterward, all samples were annealed at 400 °C in the O_2 ambient for 20 min to strengthen film quality by reducing dangling bonds. Note that for samples with laminate structure, the O_2 annealing was performed on $ZrLaO_x/ZrTiO_x$ bilayer before the deposition of the top ZrLaO_x. Finally, the TaN metal of 200 nm was deposited by DC sputter as the top electrode. Besides electrical characterization for MIM capacitors with different split conditions, x-ray diffraction (XRD) was adopted to examine whether the dielectric crystalizes during annealing. Brief process

flow and device structure are shown in Fig. 1.

III. Results and Discussion

Fig. 2 shows the zero-biased capacitances (C_0) for MIM capacitors with various split conditions measured at different frequencies. The κ value of the single ZrLaO_x (10 nm) and $ZrTiO_x$ (15 nm) are extracted to be 25.8 and 22.5 respectively while C_0 of 14.6 fF/ μ m² can be achieved for MIM capacitors with ZrLaO_x/ZrTiO_x/ZrLaO_x laminate. Note that apparent frequency dispersion in capacitance can be observed for MIM capacitors with single ZrTiO_x while others correspond to relatively frequency-independent capacitance. The reason why MIM capacitors with single ZrTiO_x suffer from more pronounced frequency dispersion can be attributed to the easily formed TaTiO interfacial layer [6] between TaN/ZrTiO_x during annealing. The interfacial layer is a defective thin film with inferior quality which lowers the relaxation time and consequently results in a capacitance much dependent on frequency [7]. This phenomenon also explains that since $ZrTiO_x$ is sandwiched by ZrLaO_x, it does not directly contact electrode and therefore the undesirable TaTiO interfacial layer can be avoided. Fig. 3 displays the XRD spectra of the single ZrLaO_x and ZrTiO_x films with 400 °C O_2 annealing. Since no diffraction peaks are found for these two films, it can be inferred that the ZrLaO_x/ZrTiO_x/ZrLaO_x laminate remains amorphous after thermal treatment. Fig. 4 shows the normalized capacitance-voltage (C-V) curves for MIM capacitors with single ZrTiO_x. The VCC- α is extracted to be -4861 ppm/V for 15 nm ZrTiO_x and -10614 ppm/V² for 10 nm ZrTiO_x. The results confirm that $ZrTiO_x$ indeed possess negative VCC- α which is inversely proportional to the square of the thickness. Displayed in Fig. 5 are normalized C-V curves for MIM capacitors with single $ZrLaO_x$ (10 nm), single $ZrTiO_x$ (15 nm) dielectric, and ZrLaO_x/ZrTiO_x/ZrLaO_x laminate. Since $ZrLaO_x$ shows a strong positive VCC- α , according to "canceling effect", the MIM capacitors with $ZrLaO_x/ZrTiO_x/ZrLaO_x$ laminate achieve a low VCC- α of 33 ppm/V² which is close to the effective VCC- α of 101 ppm/V^2 calculated from the theoretical equation of a stacked dielectric [1]. Combining the capacitance density of 14.6 fF/ μ m² and the low VCC- α of 33 ppm/V², the electriccharacteristics of MIM capacitors al with ZrLaO_x/ZrTiO_x/ZrLaO_x laminate well meet the device requirement in 2020 set by ITRS. Illustrated in Fig. 6 is the comparison of the leakage current for MIM capacitors with single ZrTiO_x and ZrLaO_x/ZrTiO_x/ZrLaO_x laminate under the same physical thickness. The leakage current measured at the voltage of -1 V is about 2.5×10^{-7} A/cm² for MIM capacitor with ZrLaOx/ZrTiOx/ZrLaOx laminate and the leakage current is comparable to those reported in the literatures [2-3]. Compared to MIM capacitors with single ZrTiO, the significantly suppressed leakage current for those with ZrLaO_x/ZrTiO_x/ZrLaO_x laminate can be ascribed to two aspects. (1) The bandgap of $ZrLaO_x$ (4.2~5.8 eV) is larger than $ZrTiO_x$ (3.5~5.8 eV) [8]. (2) The inferior TaTiO interfacial layer [6] is avoided. The important device parameters for MIM capacitors with various electrodes and dielectrics are summarized in Table I. Compared to the other high- κ capacitors [2-4, 9-10], MIM capacitors with

ZrLaO_x/ZrTiO_x/ZrLaO_x laminate developed in this work reveal the best device performance and show the exceptional competence. Further improvement in leakage current is under investigation by employing NH₃ or O₂ plasma treatment for the laminate and the results will be reported elsewhere.

IV. Conclusion

The $ZrTiO_x$ film with a κ value of 22.5 was found to have a negative VCC- α . To fully exert the "canceling effect" of VCC- α , stacking ZrTiO_x with ZrLaO_x which corresponds to a positive VCC- α , dielectric in the structure of ZrLaO_x/ZrTiO_x/ZrLaO_x was investigated in this work. Besides a high capacitance density of 14.6 fF/ μ m², a low VCC- α of 33 ppm/V² and an acceptable leakage current have been achieved. The results meet the ITRS requirement set for 2020 and the ZrLaO_x/ZrTiO_x/ZrLaO_x laminate holds the great potential to be applied to next-generation high-performance MIM capacitors.

Acknowledgements

This work was supported by the National Science Council of Taiwan under Contract NSC 100-2221-E-007-102 and NSC 100-2120-M-009-007

References

[1] S. J. Kim et al., IEEE EDL, 25, 538, 2004. [2] J. J. Yang et al., IEEE EDL, 30, 460, 2009. [3] Y. H. Wu et al., IEEE EDL, 33, 104, 2012. [4] B. Y. Tsui et al., IEEE EDL, 31, 875, 2010. [5] Y. H. Wu et al., APL, 98, 013506, 2011. [6] H. H. Hsu et al., Proc. Int. Symp. VLSI Technol., Syst., Appl., 67, 2009. [7] P. Gonon and C. Vallée., APL, 90, 142906, 2007. [8] G. D. Wilk et al., JAP, 89, 5243, 2001. [9] V. Mikhelashvili et al., APL, 92, 132902, 2008. [10] T. H. Phung et al., J. Electrochem. Soc., 158, H1289, 2011.

<1%

30

Fig. 1 Structure (not to scale) and process flow of MIM capacitors.

Fig. 6 Comparison of I-V characteristics for samples with different process conditions.

Fig. 5 \triangle C/C₀ vs voltage for MIM capacitors with different process conditions where C_0 is the zero-biased capacitance.

Material	Sm ₂ O ₃ /SiO ₂ [2]	TiO ₂ /SiO ₂ [3]	HfTiO/Y ₂ O ₃ [4]	HfN _x O _y /SiO ₂ / HfTiO _y [9]	Er ₂ O ₃ /SiO ₂ [10]	This Work
Top Electrode	TaN	Al	Pt	Та	TaN	TaN
Bottom Electrode	TaN	TaN	TaN	Pt	TaN	TaN
Work- function (eV)	4.6	4.6	5.6	4.2	4.6	4.6
Capacitance density (fF/µm ²)	7.9	11.9	11.2	11	7	14.6
VCC (ppm/V ²)	-56	90	1222	235	-73	33
J(A/cm ²)	$2\times 10^{-7} @3.3 \ V$	$9.3 \times 10^{-8} @1.8 \ V$	6.4×10^{-9} @-1 V	$1.5 \times 10^{-7} @ 1.5 \ V$	$1\times 10^{-8} @3.3 \ V$	$\textbf{2.5}{\times}~\textbf{10}^{-7}{\textcircled{0}}\textbf{-1}~\textbf{V}$

Table I. Comparison of MIM capacitors with various stacked dielectric and top/bottom electrodes.

🛛 1 MHz

Fig. 2 C_0 for all samples with different process condition measures at 1 MHz and 10 KHz. The difference of C₀ between 1 MHz and 10 KHz is also displayed.

