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1. Introduction

Designing reliable systems has become more difficult
in recent years[1]. In addition to conventional problems
such as transistor leakage, the degradation and variation
of transistor performance have a severe impact on the de-
pendability of VLSI systems. Random Telegraph Noise
(RTN) has attracted much attention as a temporal tran-
sistor performance fluctuation. RTN already has a severe
impact on CMOS image sensors[2], Flash memories[3], and
SRAMs[4]. Recently we have shown that RTN also induces
performance fluctuation to logic circuits[5]. On the other
hand, adaptive body-biasing technique has been widely
used to compensate for die-to-die parameter variations[6].
However, the impact of the body-biasing technique on RTN
at the circuit level has not been well understood. In this pa-
per, we investigated the impact of body-biasing technique
on RTN-induced circuit delay fluctuation.

2. Simplest Test Structure of Synchronous Circuit

Figure 1 shows the simplest test structure that can em-
ulate the synchronous circuit operation. Combinational
circuit delay is emulated by ring oscillator (RO) oscillation
frequency. Sequential circuit operation is emulated by D-
FF that is toggled by the RO output. The power supply
for RO and D-FF can be independently controlled. The
substrate bias for p-type substrate and n-type substrate
can also be independently controlled. Figure 2 shows the
whole test structure for RTN measurement. RTN-induced
delay fluctuation is measured by the RO frequency fluctu-
ation. There are 840 same samples of Fig. 1 on 2 mm2

area and the statistical nature of RTN can be evaluated
by the RO array. This chip is fabricated in a commer-
cial 40 nm CMOS technology. All measurements are done
at room temperature. Figure 3(a) shows the measure-
ment results of the oscillation frequency for about 100 s
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Figure 1: Simplest test structure that can emulate the syn-
chronous circuit operation.
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Figure 2: Whole test structure for RTN measurement.
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Figure 3: (a) Measurement result of RTN-induced RO fre-
quency fluctuation. (b) Histogram of measured ∆F/Fmax.

at VDD RO=0.65V. The body bias for pMOS (Vbs-pMOS)
and nMOS (Vbs-nMOS) are set to 0 V. Measurement re-
sults show the large step-like frequency fluctuation. Here,
Fmax is defined as the maximum oscillation frequency
and ∆F is defined as the maximum frequency fluctua-
tion as shown in Fig. 3(a). ∆F/Fmax is a good measure
for the impact of RTN-induced frequency fluctuation and
∆F/Fmax = 10.4 % for Fig. 3(a). Figure 3(b) shows the
histogram of measured ∆F/Fmax for the whole test struc-
ture of Fig. 2 over two chips (1655 ROs). It is found that
small number of samples have a large RTN-induced fluctu-
ation and a long tail exists for larger ∆F/Fmax.
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Figure 4: ∆F/Fmax of different ROs for various substrate
bias condition. ROs that have more than 4 % fluctuation
at reverse substrate bias case are shown.

3. Impact of Body-Biasing Technique on RTN

Figure 4 shows the the measurement results of ∆F/Fmax

of different ROs for various substrate bias condition. Sub-
strate bias conditions are categorized as reverse bias case
(Vbs-pMOS = −0.2V, Vbs-nMOS = 0V), normal bias case
(Vbs-pMOS = 0V, Vbs-nMOS = 0V), and forward bias
case (Vbs-pMOS = +0.2V, Vbs-nMOS = +0.2V). 300
ROs in one test structure of Fig. 2 are investigated at
VDD RO=0.65V. Figure 4 shows ROs that have more
than 4 % fluctuation at reverse bias case to evaluate the
forward body-bias effect on large ∆F/Fmax samples (24
ROs). When substrate bias is changed from the reverse
bias case to the forward bias case, ∆F/Fmax tends to de-
crease. However, for example, ∆F/Fmax slightly increases
in the case of the RO location “68” and “219” when forward
substrate bias is applied. It is found that the impact of
RTN-induced delay fluctuation tends to be reduced by for-
ward body-biasing technique, but a few ROs do not follow
this tendency. To further investigate the forward body-
bias effect on RTN, ∆F/Fmax is plotted with respect to
oscillation frequency (Fig. 5). When pMOS substrate bias
(Vbs-pMOS) is changed from −350 mV to −50 mV, it is
found that ∆F/Fmax reduces from 5.0 % to 2.8 % and
the impact of RTN is suppressed by forward body-biasing.
The oscillation frequency can also be changed by VDD RO.
When VDD RO is changed by 20 mV (Fig. 5), the fre-
quency of the RO is changed by the same amount as for
the case of changing Vbs-pMOS by 200 mV (Fig. 5). As
shown in Fig. 5, ∆F/Fmax remains almost constant value
(3.5 %) when VDD RO is changed by 20 mV. Although
RTN is not suppressed by a small shift of supply voltage,
RTN is suppressed by forward body-biasing.
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Figure 5: The impact of VDD RO shift and body-bias shift
on ∆F/Fmax.

4. Conclusions

By measuring 822 ROs fabricated in a commercial 40 nm
CMOS technology, statistical nature of RTN-induced de-
lay fluctuation is described. Small number of samples have
a large RTN-induced delay fluctuation. It is found that
the impact of RTN-induced delay fluctuation becomes as
much as 10.4 % under low supply voltage (0.65V) opera-
tion. It is also found that the impact of RTN-induced delay
fluctuation tends to be reduced by forward body-biasing
technique, but a few ROs do not follow this tendency.
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