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Abstract— This paper investigates the impact of variability on the 
robustness of subthreshold Ultra-Thin-Body SOI Sense Amplifier (UTB 
SOI SA) for SRAM applications. Specifically, intrinsic device 
variabilities due to gate Line Edge Roughness (gate LER), Work 
Function Variation (WFV) and Random Telegraph Noise (RTN) are 
included in our model library and used for the statistical analysis of 
subthreshold UTB SOI SA. Our results indicate that for Current Latch 
Sense Amplifier (CLSA), the offset voltage calculated solely from the 
threshold voltage (VT) mismatch will underestimate the actual 
dispersion and the error will increase with decreasing Vdd. For large-
signal inverter sensing, sense “0” will limit/dominate the overall 
sensing margin. In the presence of RTN, extra degradations in the 
sensing margin are observed and need to be considered. 

1. Introduction 

UTB SOI MOSFET for subthreshold SRAM applications has been 
shown to exhibit advantages in cell stability and variability [1-2]. Fig. 1 
illustrates the schematic of SRAM array in READ operation. In addition to 
the robustness of SRAM cell, the functionality of SA determines the 
correctness of sensing action and merits detailed investigation. In this 
paper, a model-assisted statistical approach [3] is carried out to efficiently 
consider multiple variation sources simultaneously and to evaluate the 
robustness of subthreshold UTB SOI SA. Our analysis is based on the 
UTB SOI MOSFET with Leff=25nm, Tch=5nm, TBOX=10nm and 
EOT=0.65nm. 

2. Operation of UTB SOI Sense Amplifier 

Two commonly used sense amplifiers are evaluated: (1) small-signal 
differential sensing using Current Latch Sense Amplifier (CLSA, shown in 
Fig. 1 [4]) and (2) large-signal inverter sensing (Fig. 1). For CLSA in Fig. 
2(a), Sense Enable (SE) signal is “Low” in Standby and pre-charges 
INT1/INT2 to “High” state. The high-going SE signal activates CLSA as 
BL/BLB differential voltage reaches the specified value that should be 
larger than the input offset voltage (VOS, due to current mismatch between 
two branches) of CLSA [5]. For large-signal single-ended sensing, an 
inverter is employed to sense either BL or BLB signal (Fig. 2(b)). To 
ensure correct READ operation, robust SA design in the presence of 
possible variation sources is required. Similar to the approach in [1], we 
derive analytical VOS and inverter trip voltage (Vtrip) models that can be 
used to evaluate the robustness of SA. Fig. 3 shows the verification and 
accuracy of the proposed models to describe Leff and Work Function (WF) 
dependencies. As can be seen, our models exhibit excellent accuracy with 
mixed-mode TCAD results for the cases studied. 

3. Variability Analysis of Subthreshold UTB SOI Sense Amplifier 

Fig. 4 shows the Ids-Vgs dispersion of UTB SOI MOSFET using 
TCAD atomistic Monte Carlo simulations [6] accounting for gate LER [7] 
and WFV [8] at the same time. At Vdd=0.4V, satisfactory ION/IOFF ratio 
(2×103X) is observed for the worst-case condition. Based on the simulated 
gate LER and WFV dispersions, the approach in [3] is applied to build 
model library for the variability analysis of subthreshold UTB SOI SA. 
For gate LER, we use a set of effective Leff and effective WF to describe 
the subthreshold characteristics of individual device and the discrepancies 
between the calibrated model and TCAD simulations for each case are 
shown in Fig. 5(a). For the WFV-induced dispersion shown in Fig. 5(b), 
the observed Subthreshold Swing (S.S.) variation is negligible and Φm (or 
VT) variation alone is employed to create the model library. Using the 
established model libraries, the influences of device variability on SA 
robustness are analyzed in Fig. 6 and Fig. 7. As can be seen, the proposed 
model-assisted approach shows fairly good agreement with TCAD 

simulations in describing VOS and Vtrip dispersions. Fig. 6(b) shows the 
comparisons of σVOS between 3 different approaches at various Vdd. Due 
to the significant S.S. variation caused by gate LER, the model-assisted 
approach considering both gate LER and WFV exhibits larger VOS 
variation and stronger Vdd dependence. Furthermore, opposite Vdd 
dependence is observed for the case of using VT mismatch alone which 
also significantly underestimates σVOS, especially at lower Vdd. In Fig. 7, 
Vtrip variations (for Inverter) are assessed and compared with σVOS (for 
CLSA). It can be seen that the inverter SA exhibits better robustness and 
variation immunity (σVtrip < σVOS). 

Similar to the framework in [9-10], the dispersion of Bit-line voltages 
during READ operation can be determined by the extreme SRAM cells 
with least/nominal/most “cell” READ and Standby leakage currents for 
the analysis of sensing margins. Fig. 8 demonstrates the extreme BL/BLB 
voltages with 16 and 512 cells per Bit-line with worst-case Bit-line data 
pattern where all un-selected cells have identical data that is opposite to 
the selected cell. Because of the adequate ION/IOFF ratio in UTB SOI device 
(Fig. 4), the “high-held” BLB level stays close to Vdd, while the “low-
going” BL voltage exhibits larger dispersion due to the READ current 
variation in the selected cell. Fig. 9 illustrates the determination of sense 
margin for differential CLSA at t=100 nsec. In order to correctly sense the 
signal, the values of BL/BLB differential voltage should be larger than the 
maximum of VOS dispersion. Thus, the differential sensing scheme can 
afford up to 53 (i.e. 32) cells per Bit-line. For large-signal inverter sensing, 
sense “0” and “1” margins are defined as the difference between the 
BL/BLB level and inverter Vtrip. To ensure sense “0” operation, the low-
going BL voltage must be lower than the minimum of Vtrip (Fig. 10). 
Similarly, for sense “1” margin (Fig. 11), the “high-held” BLB voltage 
should stay above the maximum of Vtrip. It is observed that the worse sense 
“0” margin limits the affordable number of cells per Bit-line. 

In addition to gate LER and WFV, the importance of RTN increases 
with scaling due to its inverse area dependence [11] and its impact on SA 
variability is examined in this section. Fig. 12 shows the dependence of 
RTN amplitude on the position of single trap near channel/gate insulator 
interface. Similar to the planar BULK MOSFET [12], the trap placed at 
the center region of the channel exhibits the largest impact (worst position) 
and is used for the worst-case analysis of UTB SOI SA. For large-signal 
inverter sensing, the trapping/de-trapping in each transistor forms 4 
possible Vtrip combinations and the resulting ∆Vtrip is around 8 mV (Fig. 
13(a)). In Fig. 13(b), the minimum Vtrip combination is selected and 
combined with gate LER and WFV. In the existence of RTN, Vtrip 
lowering is observed and sense “0” margin is degraded. Fig. 14(a) and Fig. 
14(b) illustrate the possible VOS of various trapping/de-trapping 
combinations induced by RTN for CLSA. It is observed that the transistors 
connected to BL/BLB (A2/A3) suffer the highest impact and the 
maximum VOS (worst case) occurs for the A0 and A2 transistors in trapped 
state. For the worst-case combination (Fig. 14(c)), inclusion of RTN shifts 
the VOS distribution to higher value and limits the sensing margin. 
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Fig. 1. Schematic of SRAM array 
in READ operation. 

Fig. 2. The operations of sense amplifier for (a) small-signal 
differential sensing with CLSA and (b) large-signal sensing with 
inverter. 

Fig. 3. Verification of (a) VOS and (b) Vtrip model for CLSA and inverter sense amplifier, respectively. The 
values of Leff and Work Function (WF) are varied in ND1 (CLSA) and pull-down NFET (inverter) devices.

Fig. 4. The distribution of Ids-Vgs 
characteristics of UTB SOI MOSFET 
considering gate LER and WFV. 

Fig. 5. Model calibration with atomistic TCAD simulations to build model libraries for gate LER and WFV. 
(a) The error analysis of S.S. and IOFF for gate LER, and (b) determination of WFV library by Φm (VT) shift. 
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Fig. 7. Variability comparison of 
CLSA and inverter sense 
amplifier. The inset shows the Vtrip 
comparison between TCAD 
simulation and model-assisted 
approach at Vdd=0.4V. 

Fig. 6. (a) Comparison of VOS variation between TCAD atomistic 
simulations and model-assisted approach considering gate LER and 
WFV and (b) the VOS variation at various Vdd. 

Fig. 8. The BL/BLB voltages with 16 
and 512 cells per Bit-line at Vdd=0.4V. 

Fig. 9. Margin of differential CLSA at 
t=100 nsec. The values of Bit-line 
differential voltage should be larger than 
the maximum of VOS dispersion (orange 
lines) to ensure correct sensing action. 

Fig. 10. Margin of large-signal inverter 
sense amplifier. The margin is defined 
by where all possible BL levels should 
be smaller than the minimum Vtrip. 

Fig. 11. Margin of large-signal inverter 
sense amplifier. The Vtrip distribution 
should be lower than the possible BLB 
levels at the end of sensing action. 

Fig. 12. Dependence of RTN 
amplitude on the position of 
trap at channel/gate insulator 
interface of UTB SOI device. 
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Fig. 13. (a) Possible values of inverter Vtrip variation formed by 
trapping/de-trapping in each device and (b) the Vtrip lowering due to 
RTN in the presence of gate LER/WFV. The bit value of “0” and 
“1” represent the “de-trapping” and “trapping” state, respectively. 

Fig. 14. (a) Binary-coded definition of trapping/de-trapping in each device for RTN 
analysis in CLSA and (b) the possible VOS of various trapping/de-trapping 
combinations. (c) Comparison of VOS distributions between the worst-case (max. VOS) 
combination and the case without RTN. 
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