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the timing difference between two pulses
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1. Introduction

Neural networks, which are inspired from brain systems,

consist of many neurons connected each other via synapses
(Fig. 1 (a)). The synapses memorize the strength of the
connection between pre- and post- neurons, called “synap-
tic weight”. As a learning function, the synaptic weight is
modulated to update the memorized information. In brains,
their synaptic weights change depending on the relative
timing difference between spike pulses of pre- and
post-neurons, called STDP (Spike-Timing Dependent Plas-
ticity), as shown in Fig. 1 (b) [1,2]. To realize the brain-like
hardware neural networks, synapse devices with STDP
function is needed.

We focus on an all-oxide ferroelectric-gate field-effect
transistor (FeFET) as a candidate for the synapse device
with a learning function [3-5]. The FeFET is a
ZnO-channel FET using ferroelectric Pb(Zr,Ti)O; as a gate
insulator. Owing to Coulomb interaction between electrons
in the channel and the ferroelectric polarization, electrons
are accumulated in the channel when the polarization is
upward (Fig. 2 (a)). In contrast, electrons are depleted when
the polarization is downward (Fig. 2 (b)). Accordingly, the
channel conductance G can be modulated by the polariza-
tion, which is switched by applying the gate voltage 1.
Note that the ferroelectric polarization remains after re-
moving Vss, which enables the nonvolatility of G. Figure 2
(c) shows the measured G — Vs characteristic, in which a
counterclockwise hysteresis loop is observed, indicating GG
is dominated by the ferroelectric polarization switching. By
using pulse voltage as Vs, it is also possible to obtain an
analog-like modulation of G. Figure 2 (d) shows the con-
ductance measured before (Ginir) and after (Gpuge) applying
pulse gate voltage with various pulse heights Vg™ (see
an inset of Fig. 2 (d)). Utilizing these properties, a synaptic
weight can be memorized in an FeFET as G [5].

In this work, we realized an FeFET-based synapse de-
vice with an STDP-based learning function. The real-time
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Fig. 1 (a) A schematic of neurons (pre- and post-) connecting
via a synapse. (b) The measured change in excitatory postsy-
naptic current (EPSC) of a hippocampal neuron of a rat [2],
which corresponds to the change of synaptic weight.

learning was also demonstrated for the first time.
2. Synapse and neuron circuit

We propose a circuit comprising a synapse and a neu-
ron (Fig. 3 (a)). The voltage signals of I'prg from the
pre-neuron and Jposr from the post-neuron are used to up-
date the synaptic weight, which is memorized as G. prg2
determines whether the signal from the pre-neuron is
transmitted to the post-neuron. In learning, Vprei, Vereo.
and Ipogr are input to the synapse. The bipolar pulse prg;
is input to the gate of the FeFET via a selector which acts
as follows. Only while Vpogr is input, Fprg; 1S given to the
gate via the selector. While Jposr is not input, the selector
keeps the gate grounded. Therefore the height of the pulse
voltage Vss applied to the gate depends on the relative in-
put timing difference 1, of IprE; and Vposr. Considering the
characteristic of the pulse voltage modulation of G plotted
in Fig. 2 (d), the changes of G by applying Vs depend on
fp, which corresponds to the STDP-learning. Unless the
learning is performed, VPR_EI and VPRE2 are input and VPOST
is not input to the synapse. As a result, Jpre; does not
modulate G. On the other hand, the signal transmission
from the pre-neuron to the post-neuron is dominated by
I’prE2. VerE2 turns on the switching transistor, and then the
pulse current flows into the neuron. Note that the amplitude
of the current is determined by G, meaning that the signal
from the pre-neuron is weighted by the synapse. The input
current is temporally integrated as an output voltage Vour
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Fig. 2 Schematlcs of FeFETs with (a) hlgher and (b) lower
conductance. (c) Gate voltage Vg dependence on the conduc-
tance G of the FeFET. (d) G before (Git) and after (Gpuse)
applying a square-pulse gate Voltage depicted in the inset with
varying the pulse height Vgg?™™®
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by an analog integrator in the neuron. Accordingly, the
updated G is reflected in the variation of Vour. When Voyr
exceeds a threshold voltage V4, a waveform generator out-
puts two pulses to other neurons simultancously. Then, one
of the two pulses is given to the synapse as Jposr.

Owing to the three-terminal structure of the FeFET, the
updating of the synaptic weight can be performed by just
applying Jposr without canceling signal transmission
among neurons, which is the same as brain systems, while
the necural networks using the previously reported
two-terminal synapse need to stop signal transmission for
learning [6].

3. Spike-timing learning

A circuit with our own FeFET shown in Fig. 3 (a) was
fabricated on a breadboard, and then we demonstrated an
STDP-based learning in the circuit. Figures 3 (b)-(d) show
the observed behavior of the selector in the case of 1p = -6,
0, 10, and 20 ps. Here, #5 is defined as the time difference
between the centers of Vereiz) and Vposr depicted by ar-
rows in Fig. 3 (b). V55 changes depending on 7, as shown in
Fig. 3 (d). Since Vpogr decides whether Fprg, is input to the
gate or not, changes of the conductance AG before and after
applying Vpre and Vposr were measured with varying #p
(Fig. 3 (e)). This result indicates that we successfully
achieved STDP function because the AG — fp curve resem-
bles the biologically measured STDP (Fig. 1 (b)).
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Fig. 3 (a) Schematics of a circuit with a synapse and a neuron.
Time-sequence diagrams of (b) Vpgrei, (¢) Vpost, and (d) the
output of the selector Vg, with different timing difference # of
Vergr and Vpogr. (€) Changes of the conductance of the FeFET
AG by applying Vprei and Vpogr with changing #p,.
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Figures 4 (a)-(c) show two inputs Ipost, Vpre2 and out-
put of the integrator Jour, respectively. The amplitude of
Vour is increased during the input of Vpges, and then Voyr
decays after I'prpy turns off the switching transistor with
reflecting the leaky integration behavior. Around 7 = 0 ps,
the STDP-learning was performed by applying Vere1, Verez
and Vpost with fp = 0, 10, and 20 ps. In case of 1rp = 0 us, as
the conductance becomes larger than that before learning (¢
< 0 us), the peak heights of Ioyr also become larger than
those at r < 0 us. Adversely, the peak heights at f, = 10 us
become smaller. However, at fp = 20 ps, the peak heights
did not change. These changes in JVour by the
STDP-learning are consistent with the STDP property of
FeFET shown in Fig. 3 (¢). As above, the real-time signal
transmission and the STDP-learning were successfully ob-
served, which is necessary for the practical applications.

Utilizing the neuron circuit, it would be possible to re-
alize an associative memory operation in a spike-based
Hopfield-type feedback neural network [7] with STDP
-based learning.

4. Conclusions

We demonstrated an STDP-based learning function in
the synapse device composed of an FeFET, and success-
fully observed that in real-time the learning result was re-
flected in the behavior of a neuron for the first time. These
results indicate the potential for realizing neural networks
emulating behaviors of brain synapses.
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Fig. 4 Real-time measurements of (a) Vpogs, (b) Vprea, and (c)
Vour with changing the timing difference fp between Vpogr and

VPRE2-

-1141-



