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Introduction 
The chemical structures of 0.5-nm-thick composi-

tional transition layer (CTL) formed at SiO2/Si(100) inter-
face [1] have been studied extensively [2,3] because of 
their significant influence on the performance of Si-based 
devices. However, the dependences of chemical structures 
of CTL stabilized by more than one monolayer of SiO2 on 
oxidation temperature, annealing in forming gas, and oxi-
dizing species were not clarified yet and is the subject of 
the present study using angle-resolved photoelectron spec-
troscopy (ARPES) at photon energy of 1050 eV. 
 
Experimental Results and Discussion 

Figure 1(a) shows the Si 2p3/2 spectra measured at 
photoelectron take-off angles at vacuum/oxide interface 
(TOAs) of 15 and 85 arising from the interface formed in 
dry O2 at 900 C. Figure 1(b), in which the spectra arising 
from Si-O4 (Si4+), Si-Si-O3 (Si3+), Si+, Si2-Si-O2 (Si2+), Si+, 
Si3-Si-O (Si1+), Si substrate (Si0), α-Si, β-Si, and γ-Si are 
resolved, is obtained by taking difference between two 
spectra in Fig. 1(a), to eliminate the spectrum arising from 
the bulk Si after multiplying the spectrum measured at a 
TOA of 85 by an appropriate factor. Here, α-Si, β-Si were 
found to arise from Si substrate.[3] The α-Si are considered 
to be affected by its second nearest neighbor O atoms.[4] 
Because the binding energy (BE) of Si2+ > BE of Si+ > BE 
of Si1+ can be explained by considering the influence of 
second nearest neighbor O atoms on Si1+, Si+ is considered 
as Si1+ in the analyses of the spectra. Also, because BE of 
Si3+ > BE of Si+ > BE of Si2+ can be explained by consid-
ering the influence of second nearest neighbor O atoms on 
Si2+, Si+ is considered as Si2+ in the analyses of the spectra. 

Figures 2(a) and 2(b) show TOA dependences of 
I0/I1+, I1+/I+, I+/I2+, I2+/I+, I+/I3+, I0/I4+, I/I1+, I/I1+, and 
I/I1+ measured for the interface formed in dry O2 at 900 C 
and those measured for the interface formed using oxygen 
radicals at 400 C, respectively. Here, I0, I1+, I+, I2+, I+, I3+, 
I4+, I, I, and I denote the integrated intensity of the Si 
2p3/2 spectrum arising from Si0, Si1+, Si+, Si2+, Si+, Si3+, 
Si4+, -Si, -Si, and -Si, respectively. Because I1+/I+ and 
I+/I2+ are almost independent on TOA in Fig. 2(a), Si1+, 
Si+, and Si2+ must be localized in the same layer, and form 
the first CTL (FCTL) with Si0, a part of which forms dimer 
bonds [5]. Also because I+/I3+ are almost independent on 
TOA in Fig. 2(a), Si+ and Si3+ must be localized in the 
same layer and form the second CTL (SCTL) with Si4+. 
Here, TOA dependence of I2+/I+, which suggests the 

spacing of 0.23 nm (> 0.136 nm) between the layer 
containing Si2+ and that cotaining Si+, is considered. The 
same compositions of FCTL and SCTL are also obtained 
for interfaces formed in dry O2 at 1000 and 1050 C, that 
formed in dry O2 at 900 C followed by annealing in 
forming gas at 400 C (FGA). Thicknesses of SiO2 layers 
denoted by d formed on SCTL in dry O2 at 900, 1000, and 
1050 C, and that formed in dry O2 at 900 C followed by 
FGA are 0.58, 0.36, 0.44, and 0.61 nm, respectively. 
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FIG. 1. (a) Si 2p3/2 spectra arising from interface formed in 

dry O2 at 900 °C measured at photon energy of 1050 eV 

and photoelectron take-off angles (TOAs) of 15° and 85°, 

(b) spectrum obtained by taking difference between two 

spectra in (a) to eliminate spectrum arising from bulk Si. 
 
Figure 2 was analyzed by considering that one 

monolayer of Si4+, that of SCTL, that of FCTL, and that of 
Si0 are continuosly connected with each other. For these 
analyses the volume of Sin+ denoted by 1/cn+, the thickness 
of hypothetical monolayer consisting of Sin+ denoted by 
tmn+, and the inelastic mean free path in hypothetical bulk 
Sin+ denoted by n+ are defined as follows by considering 
that Sin+ (n = 1, 2, 3) can be expressed as Si{1 –(n/4)}(SiO2)(n/4). 
Firstly, 1/cn+ is defined by eq. (1) as follows using c0 (den-
sity of Si atoms in Si0) = 5×1028 m-3 and c4+ (density of Si 
atoms in Si4+ in structural transition layer) = 2.38×1028 m-3. 
Secondly, tmn+ is defined by D100/cn+ using cn+. Here, D100 
denotes areal density of Si atoms on Si(100) and takes a 
value of 6.8×1018 m-2. Furthermore, if the oxidation- 
induced volume expansion occurs perpendicular to the in-
terface by a factor of (1/c4+)/(1/c0) = 2.10, tm4+ takes a value 
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of tm0 (=0.136 nm) × 2.10 = 0.286 nm. Thirdly, 1/n+ is 
defined by eq. (2) as follows using 0 = 1.57 nm and 4+ = 
2.21 nm by considering that (1/n+) is proportional to the 
inelastic scattering cross section of Sin+: 
  1/cn+ = [{1 - (n/4)}/c0] + {(n/4)/c4+}.         (1) 

1/n+ = {1 - (n/4)}/0 + (n/4)/4+.            (2) 
Contributions of Si1+, Si+, and Si2+ to the FCTL and 

those of Si+ and Si3+ to the SCTL are determined as shown 
in Fig. 3 in such a way that TOA dependences of I0/I1+, 
I1+/I+, I+/I2+, I2+/I+, I+/I3+, and I0/I4+ in Fig. 2(a) can be 
consistently explained. Contributions of -Si, -Si, and 
-Si to Si substrate spectrum were determined as shown in 
Fig. 4 in such a way that TOA dependences of I/I1+, I/I1+, 
and I/I1+ in Fig. 2(a) can be explained. Furthermore, these 
contributions were found to depend on the oxidation 
temperature (OT) (900, 1000, and 1050 C) and FGA as 
shown in Fig. 3. 
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FIG. 2. (a) TOA dependences of spectral intensity ratios 

measured for interface formed in dry O2 at 900 C and (b) 
those measured for interface formed using oxygen radicals. 

Dashed lines show calculated curves. 

 
Contributions of Si1+, Si+, and Si2+ to the FCTL and 

those of Si+ and Si3+ to the SCTL for the interface formed 
using oxygen radicals are determined as shown in Fig. 3 in 
such a way that TOA dependences of I0/I1+, I1+/I+, I+/I2+, 
I2+/I+, I+/I3+, and I0/I4+ in Fig. 2(b) can be consistently 
explained. TOA dependences of I1+/I+, I+/I2+, I2+/I+, and 
I+/I3+ suggest followings: 1) Si+ and Si2+ are localized in 
the same layer and are far from the interface only by 0.11 
nm (< 0.136 nm) with respect to the layer containing Si1+. 
Then, Si1+, Si+, and Si2+ are considered to constitute the 
FCTL with Si0 as shown in Fig. 3, 2) Si+ and Si3+ are 
localized in the same layer and are considered to constitute 
SCTL with Si4+ as shown in Fig. 3. Contributions of -Si, 
-Si, and -Si to Si substrate spectrum are determined as 
shown in Fig. 4 in such a way that TOA dependences of 
I/I1+, I/I1+, and I/I1+ shown in Fig. 2(b) can be explained.  

900 ºC
d = 0.57 nm

≡ 1.99 ML

900 ºC
with FGA

d = 0.61 nm
≡ 2.13 ML

1000 ºC
d = 0.36 nm

≡ 1.26 ML

1050 ºC
d = 0.44 nm

≡ 1.54 ML

SCTL

FCTL
0.22nm

0.23nm

0.23nm

0.21nm
SCTL

FCTL

SCTL

FCTL

SCTL

FCTL

0 1 2 3 4 5 6 7 8 9
1
0

0

1

2

3

4

5

6
S
i

g
a
m
m
a

b
e
ta

a
lp
h
a

monolayer (ML)
0 0.40.2 0.6 0.8 1.0

O radicals
400 ºC

d = 0.79 nm
≡ 2.76 ML

0.12nm

0.11nm

SCTL

FCTL

Si1+

Si2+

Si3+

Siν+

Siμ+

Si4+

Si0

 
FIG. 3. Contributions of Si0, Si1+, Si+, and Si2+ to the first 

compositional transition layer (CTL) and those of Si+, Si3+, 
and Si4+ to the second CTL for five kinds of interfaces. 
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FIG. 4. Oxidation-induced chemical structural changes in 
amounts of -Si, -Si, and -Si in Si substrate for two kinds 
of interfaces. 
 
Conclusion 

The dependences of interfacial transition on the 
oxidation temperature (OT), annealing in forming gas 
(FGA), and oxidizing species suggest followings: 1) For 
five kinds of interfaces the first CTL consists of Si1+, Si+, 
Si2+, and Si0, while the second CTL consists of Si+, Si3+, 
and Si4+, 2) For the interfaces formed in dry O2 increase in 
the amount of Si1+ with the increase in OT implies the 
increase in the area of (111) facet with the increase in OT, 
3) FGA-induced decrease in the amount of Si1+ and Si2+ in 
the first CTL imply that Si-O bonds are broken to form 
Si-H bonds, 4) In contrast to the oxidation in dry O2, by the 
oxidation using oxygen radicals Si+ and Si2+ are formed far 
from the interface with respect to Si1+, 5) Amount of β-Si 
formed using oxygen radicals is smaller than that formed 
by oxidation in dry O2. 
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