Dependence of chemical structures of transition layer at SiO₂/Si(100) interface on oxidation temperature, annealing in forming gas, and oxidizing species

Tomoyuki Suwa¹, Akinobu Teramoto¹, Takayuki Muro², Toyohiko Kinoshita², Shigetoshi Sugawa^{1,3}, Takeo Hattori¹, Tadahiro Ohmi¹

 ¹ New Industry Creation Hatchery Center, Tohoku University, 6-6-10, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Japan
Phone: +81-22-795-3977 E-mail: suwa@fff.niche.tohoku.ac.jp
² Japan Synchrotron Radiation Research Institute
³ Graduate School of Engineering, Tohoku University

Introduction

The chemical structures of 0.5-nm-thick compositional transition layer (CTL) formed at $SiO_2/Si(100)$ interface [1] have been studied extensively [2,3] because of their significant influence on the performance of Si-based devices. However, the dependences of chemical structures of CTL stabilized by more than one monolayer of SiO_2 on oxidation temperature, annealing in forming gas, and oxidizing species were not clarified yet and is the subject of the present study using angle-resolved photoelectron spectroscopy (ARPES) at photon energy of 1050 eV.

Experimental Results and Discussion

Figure 1(a) shows the Si $2p_{3/2}$ spectra measured at photoelectron take-off angles at vacuum/oxide interface (TOAs) of 15° and 85° arising from the interface formed in dry O₂ at 900 °C. Figure 1(b), in which the spectra arising from \underline{Si} -O₄ (Si⁴⁺), Si- \underline{Si} -O₃ (Si³⁺), Si^{v+}, Si₂- \underline{Si} -O₂ (Si²⁺), Si^{µ+}, Si₃-Si-O (Si¹⁺), Si substrate (Si⁰), α -Si, β -Si, and γ -Si are resolved, is obtained by taking difference between two spectra in Fig. 1(a), to eliminate the spectrum arising from the bulk Si after multiplying the spectrum measured at a TOA of 85° by an appropriate factor. Here, α -Si, β -Si were found to arise from Si substrate.[3] The α -Si are considered to be affected by its second nearest neighbor O atoms.[4] Because the binding energy (BE) of $Si^{2+} > BE$ of $Si^{\mu+} > BE$ of Si¹⁺ can be explained by considering the influence of second nearest neighbor O atoms on Si¹⁺, Si^{µ+} is considered as Si¹⁺ in the analyses of the spectra. Also, because BE of Si³⁺ > BE of Si^{V+} > BE of Si²⁺ can be explained by consid-ering the influence of second accurate size 2ering the influence of second nearest neighbor O atoms on Si^{2+} , $Si^{\nu+}$ is considered as Si^{2+} in the analyses of the spectra.

Figures 2(a) and 2(b) show TOA dependences of I_0/I_{1+} , $I_{1+}/I_{\mu+}$, $I_{\mu+}/I_{2+}$, $I_{2+}/I_{\nu+}$, $I_{\nu+}/I_{3+}$, I_0/I_{4+} , I_{α}/I_{1+} , I_{β}/I_{1+} , and I_{γ}/I_{1+} measured for the interface formed in dry O₂ at 900 °C and those measured for the interface formed using oxygen radicals at 400 °C, respectively. Here, I_0 , I_{1+} , $I_{\mu+}$, I_{2+} , $I_{\nu+}$, I_{3+} , I_{4+} , I_{α} , I_{β} , and I_{γ} denote the integrated intensity of the Si $2p_{3/2}$ spectrum arising from Si⁰, Si¹⁺, Si^{\mu+}, Si²⁺, Si^{\nu+}, Si³⁺, Si⁴⁺, α -Si, β -Si, and γ -Si, respectively. Because $I_{1+}/I_{\mu+}$ and $I_{\mu+}/I_{2+}$ are almost independent on TOA in Fig. 2(a), Si¹⁺, Si^{\mu+}, and Si²⁺ must be localized in the same layer, and form the first CTL (FCTL) with Si⁰, a part of which forms dimer bonds [5]. Also because $I_{\nu+}/I_{3+}$ are almost independent on TOA in Fig. 2(a), Si⁴⁺. Here, TOA dependence of $I_{2+}/I_{\nu+}$, which suggests the

spacing of 0.23 nm (> 0.136 nm) between the layer containing Si^{2+} and that cotaining Si^{v+} , is considered. The same compositions of FCTL and SCTL are also obtained for interfaces formed in dry O₂ at 1000 and 1050 °C, that formed in dry O₂ at 900 °C followed by annealing in forming gas at 400 °C (FGA). Thicknesses of SiO₂ layers denoted by d formed on SCTL in dry O₂ at 900, 1000, and 1050 °C, and that formed in dry O₂ at 900 °C followed by FGA are 0.58, 0.36, 0.44, and 0.61 nm, respectively.

FIG. 1. (a) Si $2p_{3/2}$ spectra arising from interface formed in dry O₂ at 900 °C measured at photon energy of 1050 eV and photoelectron take-off angles (TOAs) of 15° and 85°, (b) spectrum obtained by taking difference between two spectra in (a) to eliminate spectrum arising from bulk Si.

Figure 2 was analyzed by considering that one monolayer of Si⁴⁺, that of SCTL, that of FCTL, and that of Si⁰ are continuosly connected with each other. For these analyses the volume of Siⁿ⁺ denoted by $1/c_{n+}$, the thickness of hypothetical monolayer consisting of Siⁿ⁺ denoted by t_{mn+} , and the inelastic mean free path in hypothetical bulk Siⁿ⁺ denoted by λ_{n+} are defined as follows by considering that Siⁿ⁺ (n = 1, 2, 3) can be expressed as Si_{{1-(n/4)}}(SiO₂)_{(n/4}). Firstly, $1/c_{n+}$ is defined by eq. (1) as follows using c₀ (density of Si atoms in Si⁰) = 5×10²⁸ m⁻³ and c₄₊ (density of Si atoms in Si⁴⁺ in structural transition layer) = $2.38 \times 10^{28} \text{ m}^{-3}$. Secondly, t_{mn+} is defined by D₁₀₀/c_{n+} using c_{n+}. Here, D₁₀₀ denotes areal density of Si atoms on Si(100) and takes a value of $6.8 \times 10^{18} \text{ m}^{-2}$. Furthermore, if the oxidation-induced volume expansion occurs perpendicular to the interface by a factor of $(1/c_{4+})/(1/c_0) = 2.10$, t_{m4+} takes a value

of t_{m0} (=0.136 nm) × 2.10 = 0.286 nm. Thirdly, $1/\lambda_{n+}$ is defined by eq. (2) as follows using $\lambda_0 = 1.57$ nm and $\lambda_{4+} = 2.21$ nm by considering that $(1/\lambda_{n+})$ is proportional to the inelastic scattering cross section of Siⁿ⁺:

$1/c_{n+} = [\{1 - (n/4)\}/c_0] + \{(n/4)/c_{4+}\}.$	(1)
$1/\lambda_{n+} = \{1 - (n/4)\}/\lambda_0 + (n/4)/\lambda_4$	(2)

Contributions of Si¹⁺, Si^{µ+}, and Si²⁺ to the FCTL and those of Si^{v+} and Si³⁺ to the SCTL are determined as shown in Fig. 3 in such a way that TOA dependences of I_0/I_{1+} , $I_{1+}/I_{\mu+}$, $I_{\mu+}/I_{2+}$, I_{2+}/I_{v+} , I_{v+}/I_{3+} , and I_0/I_{4+} in Fig. 2(a) can be consistently explained. Contributions of α -Si, β -Si, and γ -Si to Si substrate spectrum were determined as shown in Fig. 4 in such a way that TOA dependences of I_{α}/I_{1+} , I_{β}/I_{1+} , and I_{γ}/I_{1+} in Fig. 2(a) can be explained. Furthermore, these contributions were found to depend on the oxidation temperature (OT) (900, 1000, and 1050 °C) and FGA as shown in Fig. 3.

FIG. 2. (a) TOA dependences of spectral intensity ratios measured for interface formed in dry O_2 at 900 °C and (b) those measured for interface formed using oxygen radicals. Dashed lines show calculated curves.

Contributions of Si¹⁺, Si^{µ+}, and Si²⁺ to the FCTL and those of Si^{v+} and Si³⁺ to the SCTL for the interface formed using oxygen radicals are determined as shown in Fig. 3 in such a way that TOA dependences of I₀/I₁₊, I₁₊/I_{µ+}, I_{µ+}/I₂₊, I₂₊/I_{v+}, I_{v+}/I₃₊, and I₀/I₄₊ in Fig. 2(b) can be consistently explained. TOA dependences of I₁₊/I_{µ+}, I_{µ+}/I₂₊, I₂₊/I_{v+}, and I_{v+}/I₃₊ suggest followings: 1) Si^{µ+} and Si²⁺ are localized in the same layer and are far from the interface only by 0.11 nm (< 0.136 nm) with respect to the layer containing Si¹⁺. Then, Si¹⁺, Si^{µ+}, and Si²⁺ are considered to constitute the FCTL with Si⁰ as shown in Fig. 3, 2) Si^{v+} and Si³⁺ are localized in the same layer and are considered to constitute sCTL with Si⁰⁺ as shown in Fig. 3. Contributions of α-Si, β-Si, and γ-Si to Si substrate spectrum are determined as shown in Fig. 4 in such a way that TOA dependences of I_α/I₁₊, I_β/I₁₊, and I_γ/I₁₊ shown in Fig. 2(b) can be explained.

FIG. 3. Contributions of Si^0 , Si^{1+} , $Si^{\mu+}$, and Si^{2+} to the first compositional transition layer (CTL) and those of $Si^{\nu+}$, Si^{3+} , and Si^{4+} to the second CTL for five kinds of interfaces.

FIG. 4. Oxidation-induced chemical structural changes in amounts of α -Si, β -Si, and γ -Si in Si substrate for two kinds of interfaces.

Conclusion

The dependences of interfacial transition on the oxidation temperature (OT), annealing in forming gas (FGA), and oxidizing species suggest followings: 1) For five kinds of interfaces the first CTL consists of Si^{1+} , $Si^{\mu+}$, Si^{2+} , and Si^{0} , while the second CTL consists of $Si^{\nu+}$, Si^{3+} , and Si^{4+} , 2) For the interfaces formed in dry O₂ increase in the amount of Si^{1+} with the increase in OT implies the increase in the area of (111) facet with the increase in OT, 3) FGA-induced decrease in the amount of Si^{1+} and Si^{2+} in the first CTL imply that Si-O bonds are broken to form Si-H bonds, 4) In contrast to the oxidation in dry O₂, by the oxidation using oxygen radicals $Si^{\mu+}$ and Si^{2+} are formed far from the interface with respect to Si^{1+} , 5) Amount of β -Si formed using oxygen radicals is smaller than that formed by oxidation in dry O₂.

Acknowledgements

This work was supported by MEXT under a Grant-in-Aid for Specially Promoted Research (No. 18002004). The synchrotron radiation experiments were performed at SPring-8 with the approval of JASRI.

References

- [1] T. Aiba et al., Jpn. J. Appl. Phys. 34 (1995) 707.
- [2] T. Hattori, Crit. Rev. Solid State Mater. Sci. 20 (1995) 339.
- [3] J. H. Oh et al., Phys. Rev. B 63 (2001) 205310.
- [4] O. V. Yazyev et al., Phys. Rev. Lett. 96 (2006) 157601.
- [5] A. Bongiorno et al., Phys. Rev. Lett. 90 (2003) 186101.