Interfacial Reaction Mechanism in Al₂O₃/Ge Structure by Oxygen Radical

K. Kato^{1,2}, S. Shibayama¹, M. Sakashita¹, W. Takeuchi¹, N. Taoka¹, O. Nakatsuka¹, and S. Zaima¹

¹ Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

Phone: +81-52-789-3819 E-mail: kkato@alice.xtal.nagoya-u.ac.jp

² Research Fellow of Japan Society for the Promotion of Science

1. Introduction

Oxidation and decomposition reactions of Ge or Ge oxides are key factors to control the interfacial structures of high-k/Ge stack structures in MOSFETs. The oxygen (O) plasma process to an Al₂O₃/Ge structure can effectively reduce the interface state density (D_{it}) in spite of the quite low diffusivity of oxygen in an Al₂O₃ layer [1,2]. On the other hand, Ge diffuses into an Al₂O₃ layer with the O₂ thermal annealing, although the formation of a Ge oxide interlayer following to the oxygen supply to Al₂O₃/Ge structures does not occur [3]. These results mean that the oxidation at the Al₂O₃/Ge interface is not able to be understood by the oxidation mechanism at a SiO₂/Si interface [4], and that mechanisms of interfacial reactions at a high-k/Ge interface have not yet clarified in detail.

In this study, we investigated mechanisms of interfacial reactions in the Al_2O_3/Ge structure during O radical process through analyses of chemical bonding states and the electrical interface properties of MOS capacitors. We clarified the oxidation reaction at the Al_2O_3/Ge interface. We demonstrate that the depth distribution of Ge can be controlled by the O radical process, hardly depending on the process temperature, and the O radical process at a low temperature can effectively reduce D_{it} .

2. Experimental

The fabrication process flow of the MOS capacitors using the O radical process and the resulting sample structure are shown in Fig. 1. After cleaning p-Ge(001) substrates, a 1-nm-thick-Al₂O₃ layer (1st-Al₂O₃ layer) was formed at 300°C using atomic layer deposition (ALD) method. Then, the N-O mixture radical process was performed at from 50 to 500°C for 5 min in an ultra high vacuum chamber. The O radical density was controlled by adjusting the mixture ratio of O2 and N2 gases. The ratio of the O₂ gas partial pressure $(R_0 = P_{O2}/(P_{N2} + P_{O2}))$ was ranging from 1.8% to 100%, and the sum of N_2 and O_2 partial pressures was kept at 4×10^{-3} Pa. Finally, to suppress gate leakage current, a 3-nm-thick Al₂O₃ layer (2nd-Al₂O₃ layer) was deposited on the 1st-Al₂O₃ layer, and then gate Al electrodes were formed by vacuum evaporation. Chemical bonding states and electrical properties of the MOS interfaces were evaluated by X-ray photoelectron spectroscopy (XPS), C-V and conductance-voltage (G-V) methods.

3. Results and discussion

Figure 2 shows *C-V* characteristics of the MOS capacitors after the O radical process at 50°C in various R_0 . A hump is obviously observed in the *C-V* curves without the O radical process. On the other hand, after the O radical process, the hump is hardly observed in the *C-V* curves. *G-V* method clarified that D_{it} effectively decreases with increasing R_0 by the O radical process at 50°C (Fig. 3).

In order to clarify the reduction mechanism of D_{it} , the chemical bonding states for the 1st-Al₂O₃/Ge sample after

the O radical process were investigated by hard X-ray photoelectron spectroscopy (HAXPES) method (Fig. 4). The intensity of the peaks associated with Ge^{3+} suboxide or GeO_x increases with R_0 (Fig. 4 and 5). On the other hand, from the $R_{\rm O}$ dependence of the area intensity ratio of Ge oxide peaks to Ge substrate peak shown in Fig. 5, the dependence of Ge^{1+} and Ge^{2+} hardly changes. This indicates that the chemical bonding states at the Al₂O₃/Ge interfaces hardly change. To obtain information concerning depth profiles of the sub-oxides, the area intensity ratios of the Ge oxide peaks to the Al₂O₃ peak as a function of take-off angle (TOA) were evaluated (Fig. 6). The intensity ratio decreases with TOA in the case of $R_0=100\%$, indicating the segregation of the Ge atoms near the Al₂O₃/Ge interface. As mentioned before, after the O_2 thermal annealing, Ge can easily diffuse to the surface of the Al₂O₃ layer as shown in Fig. 7(a) [3]. However, as shown in Fig. 6, Ge is segregated near the Al₂O₃/Ge interface rather than the surface of the Al₂O₃ layer. These results mean that the O radical process at 50°C leads to oxidation reaction of the Ge surface through the Al_2O_3 layer (Fig. 7(b)). As a result, the formation of the Ge^{3+} suboxide or GeO_x near the Al₂O₃/Ge interface leads the low D_{it} interface.

In order to make a difference of the oxidation mechanisms between the O radical process and the O₂ thermal annealing more evident, temperature dependences of the interfacial reactions at the Al₂O₃/Ge interface were investigated. Figure 8(a) and (b) show $Ge2p_{3/2}$ spectra for the 1st-Al₂O₃/Ge samples after the O₂ thermal annealing at various temperatures and the O radical process with the $R_{\rm O}$ of 100% at 50°C, respectively. The normalized intensity of the Ge oxides for the sample after O radical process at 50°C is larger than that for the sample after O₂ annealing at 300°C. In addition, the process temperature dependence for areal density of Ge oxide formed by the O radical process is much smaller than that formed by O₂ thermal annealing (Fig. 9). In particular, there is almost no temperature dependence of areal density of Ge oxide at a process temperature ranging from 50 to 200°C, suggesting that the activation energy is quite small. The small activation energy for the formation of the Ge oxide indicates the formation of Ge oxide owing to the introduction of O atoms to the Al_2O_3/Ge interface. In the temperature above 400°C, the temperature dependence of the Ge oxidation by the O radical process approaches to that by the O₂ thermal annealing.

From the above discussion, we can control the oxidation reaction and depth distribution of Ge in the Al_2O_3 layer by the O radical process at a low temperature. It is also found that the control of the density of GeO_x in the Al_2O_3 film is effective to reduce D_{it} .

4. Conclusions

We have systematically investigated the interfacial structures and the electrical properties of the Al_2O_3/Ge stacked structure, focusing on oxidation reactions by the O

radical process. We clarified that the oxidation by the O radical process at low temperature occurs near the Al_2O_3/Ge interface in contrast to that by the O₂ thermal annealing. Also, we found that the O radical process can control the oxidation reaction of Ge at the Al_2O_3/Ge interface and the depth distribution of Ge in the Al_2O_3 film at a low temperature. We have also clarified that the possibility for decreasing in D_{it} with controlling the depth distribution of Ge in the Al_2O_3 film.

Acknowledgements

This work was partly supported by a Grant-in-Aid for

Fig. 1 Sample preparation flow and schematic diagrams of cross-sectional structures of the samples for HAXPES (XPS) and *C-V* measurement.

Fig. 4 Ge2p_{3/2} photoelectron core spectra for the 1st-Al₂O₃/Ge stacked structure after the O radical process with several R_0 measured by hard X-ray photoelectron spectroscopy method (hv = 7939 eV).

Fig. 5 $R_{\rm O}$ dependence of area intensity ratio of the Ge oxide peaks to the Ge substrate peak in Ge2p_{3/2} photoelectron core spectra for 1st-Al₂O₃/Ge stacked the structure after the O radical process. Ge suboxides of Ge14 and Ge^{2+} exist at the Al₂O₃/Ge interface, while Ge^{3+} or GeO_x diffuses into the Al_2O_3 film.

Fig. 8 $Ge2p_{3/2}$ photoelectron core spectra for the 1st-Al₂O₃/Ge stacked structure after (a) O₂ thermal annealing and (b) O radical process.

Specially Promoted Research (No. 22000011) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The HAXPES experiment was performed at the BL46XU in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI, Proposal No. 2011B0026).

References

- [1] R. Zhang et al., Appl. Phys. Lett. 98 (2011) 112902.
- [2] T. Nabatame et al., Jpn. J. Appl. Phys. 42 (2003) 7205.
- [3] S. Shibayama et al., Abstr. of IUMRS (2012) B-1.
- [4] A. S. Grove, "Physics and Technology of Semiconductor Devices", 1967.

Fig. 2 C-V characteristics for the MOS capacitors after the O radical process at 50°C with several R_0 .

Fig. 6 TOA dependence of the area intensity ratio of the Ge oxide peaks to the Al_2O_3 peak in Ge3d_{5/2} and $Al2p_{3/2}$ photoelectron core spectra for the 1st-Al₂O₃/Ge stacked structure after the O radical process measured by XPS.

Fig. 3 R_0 dependence of D_{it} for the MOS capacitors after the O radical process. The energy level of D_{it} is 0.18-0.20 eV from E_V .

Fig. 7 Schematic diagrams of the 1st-Al₂O₃/Ge samples after (a) O₂ thermal annealing and (b) O radical process. From the detailed HAXPES analysis, the thin layer concerning Ge¹⁺ and Ge²⁺ locates at the Ge³⁺ suboxide(or GeOx)/Ge interface (*not shown*).

Fig. 9 Arrhenius plot for the areal density of the Ge oxide in the $1st-Al_2O_3/Ge$ stacked structure after the O radical process and the O_2 thermal annealing.