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1. Introduction 

  III-V material and in particular InGaAs are recognized as 

one of the leading candidates to replace Si as n-channel 

material in metal-oxide-semiconductor field effect transis-

tors (MOSFETs) because of their higher injection velocity 

[1]. Recently high performance InGaAs MOFETs have 

been demonstrated, with most of the studies focusing on 

Al2O3 or HfO2 as gate dielectric. Although significant pro-

gress has been made in improving dielectric/InGaAs inter-

face, the best of these results have been reported for 

Al2O3/InGaAs interfaces. Thus scaling of InGaAs gate 

stacks has been very limited due to low dielectric constant 

(k ~ 9) of Al2O3 and its relatively small thermal processing 

window ( < 400 
o
C). HfO2 (only)-gated devices on the other 

hand, still exhibit large midgap interface state density (Dit) 

which degrades their device performance [2].  

La2O3 (k ~ 24) can intermix with the substrate through 

the formation of Ga-O-La and In-O-La bonds (fig. 2 (a) to 

(c), fig. 3 (b)). Similar bonding patterns for La2O3 can be 

observed on Si-sub (La-silicate) and Ge-sub 

(La-germanate), which can significantly improve interface 

quality [3]. This is in contrast to HfO2 which promotes the 

formation of Ga- and As-suboxides at HfO2/InGaAs inter-

face (fig. 2 (a) to (c), fig. 3 (a)). These suboxides are re-

garded as the main reason for increased Dit value in HfO2 

gate stacks [4].  

  In this study, the effect of gate metal on La2O3/ 

In0.53Ga0.47As interface quality is experimentally presented. 

It is shown for the first time that suppressing oxygen supply 

by employing Metal Inserted Poly-silicon (MIPS) stack, 

leads to significant improvement in C-V characteristics and 

thermal stability of La2O3/In0.53Ga0.47As interface. 

2. Experimental details 

  Capacitors were fabricated on S-doped n-In0.53Ga0.47As 

(dopant: 2×10
16 

cm
-3

) epiaxially grown on InP substrate. 

Substrates were degreased by acetone and ethanol and 

treated with concentrated HF and (NH4)2S at room temper-

ature for oxide removal and surface passivation. La2O3 film 

was deposited by e-beam evaporation and W gate electrode 

was in-situ deposited by RF magnetron sputtering. TiN and 

Si were subsequently deposited by RF sputtering to fabri-

cate MIPS gate stacks. Post-metallization anneals (PMA) 

were carried out in forming gas (N2:H2= 97:3%) ambient 

for 5 min.  

3. Results and discussion 

The schematic in fig. 4 illustrates the effect of gate metal 

selection on controlling the amount of oxygen diffusion 

into gate stack. Fig. 5(a)- and (b)-bottom shows the C-V 

characteristics for capacitors with and without TiN capping 

layer. A qualitative comparison of these C-V curves already 

points to an improved interface property of capacitor with 

TiN/W gate electrode. For the capacitor with TiN/W -gated 

MOSCAPs, the capacitance in depletion reaches its ideal 

value of 0.07 µF/cm
2
 and the upturn of capacitance in neg-

ative bias is suppressed for high frequencies. This indicates 

lower midgap interface state density and a sharper 

band-bending [5]. Also, the conductance [fig. 5(b)-up] is 

decreasing at increasing voltage and much lower at nega-

tive voltage compared to W-gated MOSCAP [fig. 5(a)-up]. 

This shows a smaller contribution from gate leakage cur-

rent [6].The effect of annealing temperature on capacitance 

equivalent thickness (CET) growth for both gate structures 

is shown in fig. (6). Higher temperature tolerance of 

TiN/W-gated MOSCAPs could be due to suppressed inter-

face reaction caused by oxygen-blocking effect of TiN cap-

ping layer. The added effect of oxygen barrier was investi-

gated through MIPS structure [4], fabricated according to 

the flow shown in Fig. 7. The Si layer at the top of gate 

stack blocks the diffusion of oxygen even at higher anneal-

ing temperatures. Fig. 8 shows well behaved C-V curves 

for MIPS-stacked structure after annealing at 500 
o
C and a 

subsequent low temperature anneal at 320 
o
C after Si re-

moval. Gate leakage current of three gate stacks with al-

most same CET is presented as a function of annealing 

temperature in Fig. 9. MIPS-stacked MOSCAPs have two 

orders of magnitude smaller leakage current density at 

higher annealing temperature. 

4. Conclusion 

  It was shown that gate metal selection is a key factor in 

controlling La2O3/InGaAs interface reaction. Metal inserted 

poly-Si structure was found to be an effective structure for 

oxygen diffusion control and scalability potential.  
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Fig. 8 C-V curves of MIPS structured

(Si/TiN/W/La2O3(10nm)/InGaAs

capacitor after FG annealing at 500 oC

and Si removal.

Fig. 5 Measured conductance (up) and C-V curves (bottom) of (a)

W/La2O3(10nm)/InGaAs and (b) TiN/W/La2O3(10nm)/InGaAs

capacitors as function of gate voltage after PMA in FG at 420 oC.
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Fig. 3 Illustration of difference in

La2O3/InGaAs and HfO2/InGaAs interface

reaction, triggered by oxygen diffusion..
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Fig. 4 Illustration of

suppressing oxygen

diffusion by using

TiN/W gate metal.

Fig. 6 Capacitance equivalent

thickness of two gate stacks vs

PMA temperature in FG.

Fig. 7 Process flow of InGaAs MOS capacitors.

Fig. 9 Gate leakage current of three

gate stacks at VG=VFB + 0.5 V as a

function of PMA temperature.

Fig. 2 XPS spectra of (a) As 2p (b) Ga 2p

and (c) In 3d for W/HfO2 (10 nm)/InGaAs

and W/La2O3 (10 nm)/InGaAs.

Fig. 1 Illustration of common

dielectric/InGaAs interface issues.
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