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1. Introduction 
   BSIM-CMG compact model for multi-gate MOSFETs 
is widely adopted in the semiconductor industry for device 
research and development [1][2]. In BSIM double-gate (DG)           
MOSFET model, a superposition based approximation is 
applied to solve 1-D nonlinear Poisson’s equation to obtain 
an analytic electric-potential distribution. In this paper, an 
analytic model with improved accuracy for doped DG 
MOSFETs using a rigorous perturbation method is pre-
sented. The interaction between the zeroth and first-order 
solutions is found to be important, and the first-order cor-
rection is used to improve the model accuracy for wider 
applicable conditions, especially when the doping level is 
high. 
   Unlike many other models that set the body center as 
the operating point for their linear approximation, we study 
the effect of shifting the operating point, and find that the 
model accuracy in predicting both surface charge density 
and current is significantly improved by setting the operat-
ing point at the body surface. This is consistent with the 
well-known properties that Taylor approximation is more 
accurate around the operating point, and the induced charge 
near the surface is the major contribution to the device cur-
rent.  
 
2. Theoretical Analysis and Derivation 
   The structure of a symmetric (p-type) double-gate 
MOSFET is shown in Fig.1. 1-D Poisson’s equation in-
cluding both inversion and bulk charges is: 
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where ߰ሺݔ,  ሻ is the electric potential, NA is the bodyݕ
doping, ௖ܸ௛ሺݕሻ	is the electron quasi-Fermi potential . 

Next we perform a variable transformation to remove 
the constant term in (1) by introducing a new variable ߰଴: 
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Without lose of generality, the boundary conditions of a 
symmetric fully-depleted double-gate MOSFET can be 
expressed as (only the upper half region: 0 ൑ x ൑ Tୱ୧ 2⁄  is 
needed due to the device symmetry): 
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Substituting (2) into (1) yields:  
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It should be kept in mind that no approximation is made to 

obtain (3). But when ଵ
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can be approximated using Taylor expansion. 

To estimate the accuracy of this approximation, we define a 
“relative error” as follows: 
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where ݔ଴  is the operating point to expand an arbitrary 
function fሺxሻ. 

 

Fig. 1. Schematic diagram of a 
DG MOSFET. 

Fig. 2. Relative error  
(ReErr) as a function of x-x0 
and NA . 

   The accuracy of above Taylor approximation made for a 
doped double-gate MOSFET, is determined by the doping 
density and the distance away from the operating point x0, 
as shown in Fig. 2. Since the major population of mobile 
charges is located near the body surface, a solution to (3) 
with higher accuracy near the surface is preferred. There-
fore, we set the operating point at ݔ଴ ൌ Tୱ୧ 2⁄  as the rela-
tive-error index ܴ݁ݎݎܧ grows with the distance:	ݔ െ  .଴ݔ

To clarify our derivation, we introduce several nota-
tions as follows: 

ە
ۖ
۔

ۖ
ۓ
z ൌ ሾ߰଴ݍ	 െ ௖ܸ௛ሺݕሻሿ ⁄ܶܭ 															

a ൌ 		 ଶ݊௜ଶ݁ݍ
ଵ
ଶ
௤మேಲ
௄்ఌೞ೔

ሺ
்ೄ೔
ଶ ሻమ		

௦௜ߝܶܭ ஺ܰൗ 	

b ൌ ସ݊௜ଶ݁ݍ
ଵ
ଶ
௤మேಲ
௄்ఌೞ೔

ሺ
்ೄ೔
ଶ ሻమ		

௦௜ଶൗߝଶܶଶܭ2

																								ሺ5ሻ 

Eq. (3) can be approximated as: 
߲ଶݖ
ଶݔ߲

ൌ ݁௓		 ∙ ሾܽ ൅ ܾሺݔଶ െ ௌܶ௜
ଶ

4
ሻሿ																					ሺ6ሻ 

Using the perturbation method, z can be written as the sum 
of the zeroth and first-order (perturbation) terms: 

ܼ ൌ ܼ଴ ൅ ܼଵሺܼଵ ≪ ܼ଴ሻ           (7) 
Setting the operating point at the body surface, new equa-
tions and boundary conditions can be obtained as follows: 
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Nonlinear eq. (8) has an analytic solution[3][4], and (9) can 
also be analytically solved using the approximation:  
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This approximation is highly accurate as x → ܶܵ݅ 2⁄ , where 
we are most concerned about. Consequently, the electric 
potential distribution can be obtained as: 
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Here, p is a constant to be determined from boundary con-
dition and formulation of drain current follows reference [2]. 
 

3. Comparison with BSIM Model 
   BSIM-CMG model[1][2] takes a “superposition” ap-
proach by separating the electric potential into two parts: 
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treated as a constant without an explicit explanation and a 
linear approximation is made to simplify eq. (14): 
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In our approach, the transformation technique (2) lumps the 
effects of depletion and inversion charges together to avoid 
the errors of superposition. The superposition method does 
consider the coupling of depletion and inversion charges 
(i.e.,ψଵ	and	ψଶ), but is not able to handle higher-order non-
linearity of equation itself; therefore, it is not a rigorous 
perturbation approach. Moreover, unlike our Taylor ap-
proximations in which we can readily identify their appli-
cable conditions by examining x-x0 and NA, it is unclear how 
accurate their approximations are. For example, it remains 
to be verified that the ratio of ψଶሺx, yሻ to the thermal volt-
age (~0.026V) in (15) is much smaller than one. 

We calculate the static (	 ௖ܸ௛ ൌ 0	) surface potential and 
surface charge density of a DG MOSFET using our new 
model, and compare them with the numerical solution to 
1-D eq. (1) and TCAD 2-D simulations. The results are 
shown in Figs. 3-4 (using channel length L=1um and 
mid-gap work function gate material). Fig. 3 shows the 
surface-potential error from our new model drops rapidly 
when the gate voltage increases. The error from BSIM 
model, however, grows with the gate voltage and reaches 
the maximum in strong inversion region. The same trend 
can also be observed in the surface density (integration 
along x-direction) of the induced inversion charges in the 
body, as shown in Fig. 4. As a result, drain current given by 
BSIM model significantly deviates from our TCAD results 
when the gate voltage is large, as shown in Fig. 5. On the 
other hand, it can be seen that our new model has higher 
accuracy in all regions when predicting the drain current. 

Apparently, fewer approximations are made in our model 
and a more relevant operating point (body surface) is set, 
making its accuracy higher. It should be pointed out that 
BSIM[2] model introduces a simplified variable ߰௣௘௥௧  to 
replace ߰ଶ, while it is unclear how ߰௣௘௥௧ is formulated. In 
our BSIM calculation, we simply consider a fully-depleted 
DG MOSFET and keep using ߰ଶ. However, we still were not 
able to repeat their extremely small errors of surface poten-
tial (e.g., ~ nV) compared with TCAD simulation.  

(a) (b) 
Fig. 3. Surface potential and its relative error of a DG-MOSFET 
for different doping conditions. 

 
(a) (b) 

Fig. 4. Surface charge density and relative error of a 
DG-MOSFET for different body doping concentrations. 

 
4. Conclusions 
   In this paper, we present an analytical model for doped 
double-gate MOSFET. By using a rigorous perturbation 
method to solve 1-D Poisson’s equation, more accurate 
surface potential can be obtained to improve its capability 
to predict the drain current. Both numerical solution to 1-D 
Poisson’s equation and 2-D TCAD simulation confirm that 
the accuracy of our model is higher than the widely adopted 
BSIM-CMG model, especially when the doping level is 
high.  
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