# Impact of Backgate Bias on the Sensitivity of Threshold Voltage to Process and Temperature Variations for Ultra-Thin-Body GeOI and InGaAs-OI MOSFETs Considering Quantum Confinement

Chang-Hung Yu and Pin Su

Department of Electronics Engineering & Institute of Electronics, National Chiao Tung University, Taiwan E-mail: pinsu@faculty.nctu.edu.tw

## Introduction

Germanium and III-V materials such as InGaAs have been proposed as channel material for future CMOS devices because of their enhanced transport properties [1-2]. The ultra-thin body (UTB) structure has been suggested to improve the device electrostatic integrity (EI) [3-4]. Using the UTB with thin BOX structure also enables backgate modulation of threshold voltage (V<sub>th</sub>) [3-4] for power-performance optimization. With the scaling of device dimension, the quantum confinement (QC) effect may become significant. Whether the QC effect will impact the backgate-bias  $(V_{bg})$  dependence of  $V_{th}$  sensitivity to process and temperature (T) variations for UTB GeOI and InGaAs-OI devices has rarely been known and merits investigation. In this work, using an analytical solution of Schrödinger equation verified with TCAD simulation, we investigate the impact of  $V_{bg}$  on the sensitivity of  $V_{th}$  to channel length (L), channel thickness (T<sub>ch</sub>) and temperature variations for UTB GeOI and InGaAs-OI MOSFETs considering quantum confinement.

#### Methodology – Quantum-Confinement Model

Fig. 1 shows a schematic sketch of a UTB with thin BOX structure. To consider the QC effect along the  $T_{ch}$  direction, the Schrödinger equation can be solved by treating the wave function  $\Psi_j(x)$  as power series and conduction band edge  $E_C(x)$  as a parabolic form [5-6]. Assuming the boundary condition  $\Psi_j(x = 0) = \Psi_j(x = T_{ch}) = 0$ , the eigen-energies and wave functions of UTB MOSFETs under subthreshold region can be derived [5-6]. We have verified our model using the TCAD simulation that numerically solves the self-consistent solution of 2-D Poisson and 1-D Schrödinger equations [7]. Fig. 2 shows that the  $E_j$ 's calculated by our model are fairly accurate. It should be noted that, as indicated in Fig. 2(b), the triangular potential well of  $V_{bg} = -1V$  is much sharper than that of  $V_{bg} = 1V$ , and thus the eigen-energies of  $V_{bg} = -1V$  are higher than the  $V_{bg} = 1V$  counterparts.

# Sensitivity of $V_{th}$ to Process Variations

In this study, we assume that the  $3\sigma$  process variations of device parameters are  $\pm 10\%$  of their nominal values, and use  $V_{th}$  variation  $\Delta V_{th} = |V_{th}(+10\%) - V_{th}(-10\%)| / 2$  to represent the sensitivity of  $V_{th}$  to process variations [8].

Fig. 3 shows that, for both the GeOI and InGaAs-OI device, the  $\Delta V_{th}$  caused by L variation ( $\Delta V_{th,L}$ ) increases with increasing  $V_{bg}$  under the classical (CL) condition. This is because the device electrostatic integrity deteriorates as  $V_{bg}$  increases. However, after considering the QC effect, both the GeOI and InGaAs-OI devices show reduced sensitivity of  $\Delta V_{th,L}$  to  $V_{bg}$ . In addition, the impact of QC on the InGaAs-OI device is larger than the GeOI counterpart due to its lower quantization effective mass. Fig. 4(a) shows that the  $V_{th}$  roll-off considering the QC effect is larger than the CL one for the GeOI device with  $V_{bg} = -1V$ , while Fig. 4(b) shows an opposite trend with  $V_{bg} = 1V$ . This explains why the QC effect suppresses the sensitivity of  $\Delta V_{th,L}$  to  $V_{bg}$ . Fig. 5 shows that the  $(E_0 - E_{C,min})$  (and thus the QC-induced  $V_{th}$  shift) of the long-channel GeOI device (L=100nm) substantially reduces with increasing  $V_{bg}$  because of the  $V_{bg}$ -modulated triangular well (see Fig. 2(b)). This explains Fig. 4.

Fig. 6 shows that the  $\Delta V_{th}$  caused by  $T_{ch}$  variation ( $\Delta V_{th,Tch}$ ) increases with  $V_{bg}$  under CL condition for both the GeOI and InGaAs-OI device with  $T_{ch}$ =10nm because the carrier centroid moves from frontgate to backgate interface as  $V_{bg}$  changes from -1V to 1V. In addition, for a given  $V_{bg}$  (e.g.  $V_{bg}$ =-1V), the QC effect increases the  $\Delta V_{th,Tch}$ . Nevertheless, after considering the QC effect, the backgate-bias dependence of  $\Delta V_{th, Tch}$  becomes weaker. In Fig. 7(a) with  $V_{bg}$ =-1V, the QC-induced  $V_{th}$  shift decreases as  $T_{ch}$  increases, and thus the sensitivity of  $V_{th}$  to  $T_{ch}$ around  $T_{ch}$ =10nm is enhanced by the QC effect. However, in Fig. 7(b) with  $V_{bg}$ =1V, the QC-induced  $V_{th}$  shift is comparable around  $T_{ch}$ =10nm. This is because the ( $E_0$ - $E_{C,min}$ ) (and thus the QC-induced  $V_{th}$  shift) of  $V_{bg}$ =-1V decreases with increasing  $T_{ch}$ , while the ( $E_0$ - $E_{C,min}$ ) of  $V_{bg}$ = 1V is saturated around  $T_{ch}$ =8nm, as indicated in Fig. 8.

#### Sensitivity of V<sub>th</sub> to Temperature Variation

Fig. 9 shows that the sensitivity of  $V_{th}$  to T ( $|\Delta V_{th}/\Delta T|$ ) increases with  $V_{bg}$  under CL condition for both the GeOI and InGaAs-OI devices. It can also be seen that, for a given  $V_{bg}$  (e.g.  $V_{bg}$ = -1V), the  $|\Delta V_{th}/\Delta T|$  is increased by the QC effect. Moreover, for a given  $V_{bg}$ , the QC-increased  $|\Delta V_{th}/\Delta T|$  of the InGaAs-OI device is larger than the GeOI counterpart. However, as the QC effect is considered, the sensitivity of  $|\Delta V_{th}/\Delta T|$  to  $V_{bg}$  is reduced. Fig. 10 indicates that the QC-induced  $V_{th}$  shift at T=200K is larger than that at T=400K for  $V_{bg}$  = -1V, while they are comparable for  $V_{bg}$  = 1V. This may be explained by the dominance of electrical confinement as  $V_{bg}$  decreases due to the sharper triangular well of  $V_{bg}$  = -1V. Therefore, the sensitivity of  $|\Delta V_{th}/\Delta T|$  to  $V_{bg}$  considering the QC effect is reduced (see Fig. 9).

### Summary

Using an analytical solution of Schrödinger equation verified with TCAD simulation, we demonstrate that the QC effect significantly reduces the backgate-bias dependence of the  $V_{\rm th}$  sensitivity to process and temperature variations. Since Ge and InGaAs channels exhibit different degree of quantum confinement (due to different quantization effective mass), the impact of quantum confinement has to be considered when one-to-one comparisons between GeOI and InGaAs-OI MOSFETs regarding variability are made. Our study may provide insights for multi-V<sub>th</sub> device/circuit designs using advanced UTB technologies.

#### Acknowledgement

This work was supported in part by the National Science Council of Taiwan under contract NSC 100-2628-E-009-024-MY2, and in part by the Ministry of Education in Taiwan under ATU program.

#### References

- [1] S. Bedell et al., IEEE EDL, vol. 29, no. 7, pp. 811, 2008.
- [2] M. Radosavljevic et al., IEDM Tech. Dig., pp. 319, 2009.
- [3] F. Andrieu et al., Symp. VLSI Tech., pp. 57, 2010.
- [4] C. Fenouillet-Beranger et al., Symp. VLSI Tech., pp. 65, 2010.
- [5] Y. Wu et al., IEEE EDL, vol. 32, no. 1, pp. 18, 2011.
- [6] C. Yu et al., IEEE TNANO, vol. 11, no. 2, pp. 287, 2012.
- [7] ATLAS User's Manual, SILVACO, 2008.
- [8] T. Ohtou et al., IEEE EDL, vol. 28, no. 8, pp. 740, 2007.



Fig. 1. Schematic sketch of a UTB structure with thin BOX. The origin point is located at the channel/BOX interface of source/channel junction. L is the channel length. Tch, Tox and TBOX are thicknesses of channel, gate oxide and BOX, respectively.



Fig. 3. Comparison of the sensitivity of  $\Delta V_{th,L}$  to  $V_{bg}$  with and without considering the QC effect for short-channel UTB GeOI and InGaAs-OI devices.  $\Delta V_{th,L}$  denotes the  $V_{th}$ variation caused by the L variation. CL: classical condition.

80

70

60

50

20

(a)

320

280

200

160

120

80

40

QC

5

[meV] 240

Ec.min

щ

ľ

∆V<sub>th,Tch</sub> h. b



Fig. 2. Conduction band edge E<sub>C</sub> and quantized eigen-energies of UTB MOSFETs. (a) Short-channel GeOI and InGaAs-OI devices with parabolic well at  $V_{bg}$  = 0 V. (b) Long-channel GeOI device with triangular potential well for  $V_{bg}$  = -1 V and  $V_{bg}$  = 1 V.



Fig. 5. Impact of V<sub>bg</sub> on the ground-state eigen-energy  $(E_0 - E_{C,min})$  of long-channel and short-channel UTB GeOI devices with  $T_{ch} = 10$  nm.



Fig. 4. The V<sub>th</sub> roll-off is defined as  $V_{th}(L = 100 \text{ nm}) - V_{th}(L)$ . Comparison of the Vth roll-off between QC and CL for the UTB GeOI device with  $T_{ch} = 10$  nm. (a)  $V_{bg} = -1V$ . (b)  $V_{bg} = 1V$ .



Fig. 6. Comparison of the sensitivity of  $\Delta V_{th,Tch}$  to  $V_{bg}$  with and without considering the QC effect for short-channel UTB GeOI and InGaAs-OI devices.  $\Delta V_{th,Tch}$  denotes the  $V_{th}$  variation caused by the  $T_{ch}$  variation.

Fig. 7. Impact of quantum confinement on the sensitivity of  $V_{th}$  to  $T_{ch}$  for short-channel UTB GeOI devices with various  $T_{ch}$ . (a)  $V_{bg} = -1V$ . (b)  $V_{bg} = 1V$ .



Fig. 8. The difference of ground-state eigen-energy ( $E_0$ – $E_{C,min}$ ) between V<sub>bg</sub> = -1V and  $V_{bg} = 1V$  with various  $T_{ch}$ for a short-channel UTB GeOI device.

Fig. 9. Comparison of the  $V_{\text{bg}}$  dependence of the  $V_{\text{th}}$  sensitivity to temperature between the QC and CL for long-channel UTB GeOI and InGaAs-OI devices. The sensitivity of V<sub>th</sub> to temperature ( $|\Delta V_{th}/\Delta T|$ ) is defined as  $|V_{th}(T = 400K) - V_{th}(T = 200K)|/(400K - 200K)$ .

GeOl L=100nm,EOT=1nm T<sub>ch</sub>=10nm,T<sub>BOX</sub>=10nm V<sub>DS</sub>=1V T=200K T=400K symbols: TCAD lines: mode -1 0 Backgate bias, V<sub>bg</sub> [V]

Fig. 10. The difference of QC-induced Vth shift between T = 200 K and T = 400 K with various V<sub>bg</sub> for a long-channel UTB GeOI device.