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1. Introduction

where 1, is the physical thickness of the gate oxide, and k

In order to understand the trap properties injs the Boltzmann constant. Interestingly, the lmzabf the

small-area devices, random telegraph noise (RTNres
much more important, owing to the capture and domssf
a single carrier at a gate dielectric trap [1].naligh some
works have been studied on the trap behavior offi-kig
dielectrics, relatively little literature has foads on the
anneal-dependent trap position that could be linkethe
oxygen-passivated mechanism. In this letter, theNRT
phenomenon of high-k nMOSFETs with different
post-metal anneal conditions is investigated in garson
with devices without annealed.
2. Experiment

A 20 A Hf-based dielectric film was deposited on an
ultra-thin SiQ film (~1.0 nm) by atomic layer deposition
(ALD). Then, a thin TiN layer was as a barrier layer
oxygen out-diffusion [2]. After the poly-Si gate sva
removed, three types of device were fabricated wéine
structures except anneal sequences. Devices with Ti

defects in samples with a dual-metal-layer anneal
approaches the interface of high-k dielectric amdrfacial
layer (IL) and so does as deposited, while the for
devices with mono-metal-layer anneal is 2.7 nm,cWwhs
within the high-k layer. The closer proximity toetHL/Si
interface will be responsible for the reduced tuimge
attenuation length\j for 1/f noise characterization.

By using band gap, electron affinity, thicknessd an
dielectric constant of metal/Hi5iO,/Si structure, energy
band diagram can be built [4] as shown in Fig. 5Q8sh
lines present energy levels at high gate voltagel, the
dependence of gate voltage and trap energy foerdiit
trap depths is shown in Fig. 5(b)-(d), respectivély trap
energy €:;) equals to Fermi levelH.) of Si, electron
trapping is increasing. On the other hand, RTN
phenomenon disappears due to discordancE.ofand E: .

annealed mean that the samples followed by a pmaBand diagrams in different samples are determinethe

treatment. After poly-Si removing, it was followbg a thin
TaN layer. Here the samples with the same PMAmeat
were called TiN/TaN annealed. For comparison,
samples fabricated without any PMA treatment wexléed
as deposited. And the DC and RTN characteristicthef
samples were analyzed with Agilent B1500A
semiconductor parameter analyzers.
3. Resultsand Discussion

The bsVps characteristics of nMOSFET devices
with three types of annealing conditions are showkig. 1.

As shown, nMOSFETs with a dual-metal-layer anneal

shows an approximately 4%slimprovement as compared
to the devices.

The extracted mean capturé ) and emission ;)
time constants, respectively in the high- and lawrent
states as shown in Fig 2, within a gate overdraegrof
-0.1 V to 0.4 V are presented in Fig. 3. RTN pheanan
appears at high voltage in the samples with
dual-metal-layer anneal, and it implies that elmudr are
minor captured. By analyzing the gate bias andndrai
dependences of the time constants as shown irdFigne
can determine trap depthx;(), i.e. the distance from the
Si/SIG, interface, determined by the slope of line with
equation (1) [3]:

ain("e, ) _
— - (1)

difference of basic line ( initialE;) and the volume of
voltage variation £E; ). While varied gate voltages during

thethe same range in samples with a mono-metal-layeea

will cause the most part of variation iB; below E;, as
depicted in Fig. 5(b), and it limits the RTN pheremon at
high voltage overdrive observed in Fig. 4. On tbatcary,
samples with a dual-metal-layer anneal encompasdlesm
difference between vacuum leveE/.) and trap energy

(AE,cr = Eic ~E;) and shallower trap depth that causes

the most part of variation irE; above E;, as depicted in
Fig. 5(d), this confirms that RTN phenomenon appesr
high gate voltage in Fig. 4.

The variation of trap depth depending on anneal
conditions can be understood with Fig. 6. Due te th
negative enthalpy of oxygen atoms reacting withogien
vacancies, it makes nitrogen defects filled andnethey
replace the nitrogen ions in TiN. Therefore, thplaeed
nitrogen ions form new defects in dielectric atienealing,
as shown in Fig. 6(b), which is consistent with the
simulation results [5]. Nitrogen ions existed inQ4fwill
increase electron trapping, as in $ifB], and induce the
trap location closer to the interface between Tid &fO,,
as confirmed by Fig. 4. Similarly diffusion mechsmi for
devices with dual-metal-layer anneal is shown ig. Bi(c).
Particularly, the nitrogen defects in TiN layer Iwhbe
passivated, whereas causes the trap location isHi€g/IL
interface. Furthermore, the passivation of TiN
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Fig. 3 The dependence dfc (solid point) andZe (hollow point) on Fig. 6 Schematic illustration for the process afagen ions replace by oxygen
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