Narrow Width Effects on High Frequency Performance and RF Noise of Sub-40nm Multi-finger nMOSFETs

Kuo-Liang Yeh, Chih-Shiang Chang, and Jyh-Chyurn Guo
Institute of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan
Tel: +886-3-5131368, Fax: +886-3-5724361, E-mail: jeguo@mail.nctu.edu.tw

Abstract
The impact of narrow width effects on high frequency performance parameters like f_T, f_{MAX}, and RF noise in 35 nm multi-finger n-MOSFETs is investigated in this paper. Multi-OD devices with reduced width under fixed finger number (N_F) lead to higher R_g and suffer the penalty in f_T, f_{MAX}, and N_F_{min}. On the other hand, narrow-OD MOSFET with larger N_F can yield lower R_g and higher f_{MAX}. However, these narrow-OD devices even with lower R_g suffer lower f_T and higher N_F_{min}. The mechanisms responsible for narrow width effects on f_T, f_{MAX}, and noise parameters will be presented to offer an important guideline of MOSFET layout for RF circuits design using nanoscale CMOS technology.

I. Introduction
Nanoscale CMOS MOSFETs with multi-finger layout have been extensively used for higher f_T and f_{MAX}, and lower RF noise driven by gate length scaling and gate resistance (R_g) reduction from multi-finger structure [1-3]. Unfortunately, the continuous reduction of finger width (W_F) and increase of finger number (N_F) for smaller R_g may lead to the penalty of lower transconductance (g_{m}) and larger parasitic capacitances. The former one comes from stress induced mobility degradation and the latter one stems from gate related fringing capacitances [4-5]. Both can not be scalable with device scaling and the impact may dominate high frequency characteristics in nanoscale devices. The potential impact from parasitic capacitances and the trade-off with R_g becomes a critical factor governing the specified RF performance parameters and has to be considered seriously in devices layout for RF circuit design.

II. Experimental
The multi-finger n-MOSFETs were fabricated in 65nm CMOS process with 35nm physical gate length and the total gate width fixed at 64 μm ($W_{OD}=W_{XN}=64μm$). Fig.1(a)-(c) illustrate multi-finger MOSFET layouts, namely standard, narrow-OD, and multi-OD devices in which $σ$ and $σ_i$ denote the longitudinal and transverse stresses introduced from STI. S-parameters were measured by Agilent network analyzer E8364B up to 40GHz. In particular, open and short deembedding to the bottom metal, i.e. M1, were performed to remove the parasitic capacitances from the pads as well as interconnection lines [5]. Four noise parameters, such as $N_{F_{min}}$, R_n, $Re(Y_{opt})$, and $Im(Y_{opt})$ can be measured by using ATN-NP5B from 1GHz up to 18GHz.

III. Results and Discussion
Fig. 2(a) demonstrates g_{m} versus V_{GS} ($V_{GS}-V_T$) in saturation region measured from narrow-OD and standard nMOS. This monotonic degradation of g_{m} with W_F scaling suggests that the increase of compressive $σ$ is the dominant factor responsible for mobility degradation and the resulted g_{m} reduction [6]. As for multi-OD nMOS shown in Fig. 2(b), the g_{m} of OD4 and OD8 are degraded by 11.2% and 18.9%, as compared to OD1, but the degradation becomes smaller to 8.5% for OD16. According to our recent work [7], the increase of effective width (W_{eff}) from STI top corner rounding induced $ΔW$ can compensate mobility degradation. Note that $ΔW$ of nMOS in this process is 38.7 nm. With the increase of N_{OD}, $ΔW$ effect will be enhanced and may dominate STI $σ$ effect, which explain the increase of g_{m} when scaling W_{OD} from 0.25μm for OD8 to 0.125μm for OD16. Fig. 3(a) reveals that W_F scaling in narrow-OD nMOS leads to a monotonic f_T degradation. An analytical model given by (1) [8] suggests that f_T degradation can be originated from g_{m} and/or increase of C_{gg}. For narrow-OD nMOS, the smallest g_{m} appearing in W05N128 (Fig.2(a)) is considered as one of major factors responsible for the worst f_T. Furthermore, the measured C_{gg} (Fig.3(b)) indicates 8.3% increase of C_{gg} in W05N128. The combined effect from lower g_{m} and larger C_{gg} can explain f_T degradation in narrow-OD devices [5]. As for multi-OD nMOS, Fig.4(a) again indicates a monotonic degradation of f_T with W_{OD} scaling. Obviously, OD16 with the smallest width (0.125μm) suffers the lowest f_T. As shown in Fig.4(b), OD16 reveals substantially larger C_{gg} compared to OD1. Although OD16 yields higher g_{m} than OD4 and OD8, due to $ΔW$ effect (Fig.2(b)), the much larger C_{gg} offsets the g_{m} increase and leads to f_T degradation.

Fig. 5(a) presents an increase of f_{MAX} with W_F scaling and the highest f_{MAX} achieved by W05N128. The f_{MAX} can be calculated by (2) [8], which indicates that the higher f_T and lower R_g can enhance f_{MAX}. Referring to Fig.3(a), W05N128 suffers the lowest f_T. However, the smaller W_F and larger N_F in narrow-OD devices can reduce R_g as shown in Fig.5(b). Almost 50% lower R_g realized by W05N128 can over-compensate f_T degradation and contribute to higher f_{MAX}. On the other hand, multi-OD nMOS shown in Fig.6(a) indicates a monotonic degradation of f_{MAX} with W_{OD} scaling. Referring to Fig.4(a), the larger N_{OD}, i.e. the smaller W_{OD} indeed leads to f_T degradation. As for R_g shown in Fig.6(b), the smaller W_{OD} (larger N_{OD} and fixed N_F) suffers the higher R_g and OD16 reveals around 20~25% higher R_g. According to (2), the lower f_T and larger R_g in multi-OD devices are two key factors responsible for f_{MAX} degradation with W_{OD} scaling.

Fig. 7(a)-(d) present $N_{F_{min}}$, R_n, $Re(Y_{opt})$, and $Im(Y_{opt})$ measured from the standard and narrow-OD nMOS (1~18GHz). W05N128 with the smallest W_F and R_g suffers 0.2~0.5dB higher $N_{F_{min}}$ in 9~18GHz. Fig.7(c) and (d) reveal significant increase of $Re(Y_{opt})$ and $Im(Y_{opt})$ (absolute value) in W05N128 at higher frequencies, above 9GHz. According to (3)-(4) [8], the increase of R_n or $Re(Y_{opt})$ will result in higher $N_{F_{min}}$ and the calculated $N_{F_{min}}$ can fit measured data in terms of frequency and layout dependence as shown in Fig.7(a). This proven model combined with Fig.7(b) and (c) for measured R_n and $Re(Y_{opt})$ indicates that the increase of $Re(Y_{opt})$ is the primary factor responsible for higher $N_{F_{min}}$ in narrow-OD nMOS. According to (5) for R_n, the benefit of smaller R_n in narrow-OD device happens to be cancelled out by the increase of the second term due to lower g_{m} from compressive $σ$. As for multi-OD nMOS shown in Fig.8(a)-(d), OD16 reveals the largest value in $Re(Y_{opt})$ and $Im(Y_{opt})$, leaving R_n as the exception. It is interesting to note that OD16 suffers the largest R_n (Fig.6(b)) but achieves R_n lower than OD8. Referring to (5), the higher g_{m} can help reduce R_n, due to smaller g_{m}/g_{m}', and reverse the correlation between R_n and R_g. It explains why OD16 has the larger R_n but smaller R_g than OD8. The counterbalance between $Re(Y_{opt})$ and R_n results in comparable $N_{F_{min}}$ between OD16 and OD8. All of multi-OD nMOS suffer higher $N_{F_{min}}$ than OD1.
\[f_t = \frac{g_m}{2 \pi \sqrt{C_{Gd} \cdot C_{Gg}}} \]
\[f_{\text{max}} = \frac{g_m}{2 \pi \sqrt{2 R_g (g_{\text{on}} + 2 R_g C_{Gd}) + g_{\text{on}} (R_g + R_s)}} \]
\[f_{\text{max}} = 1 + 2 R_g \left| Y_{\text{opt}} \right|^2 + R_s \left| Y_{\text{opt}} \right| \]
\[N_{\text{FB}} = 10 \log \left(\frac{R_n}{g_m} \right) \]
\[R_n = R_g + \frac{g_{\text{on}}}{g_m} (\gamma > 1 \text{ for short channel devices}) \]

Acknowledgement

This work is supported in part by the National Science Council under Grant NSC98-2221-E-009-166-MY3. Besides, the authors acknowledge the support from NDL for noise measurement and CiC for test chip and device fabrication.

References

Fig. 1 Multi-finger MOSFET layouts with various \(W_F \) and \(N_F \) and STI stresses \(\sigma \) and \(\tau \). (a) standard device: \(W_0 x N_0 =2 \mu m x 32 \) (W2N32), (b) narrow-OD devices: \(W_0 x N_0 =1 \mu m x 64 \) (W1N64), \(0.5 \mu m x 128 \) (W05N128), and (c) multi-OD devices \(W_0 x O_D x N_{O_D} \): \(W_2 = 2 \mu m : O_D4, O_D8, O_D16 \).

Fig. 2 The \(g_m \) versus \(V_{\text{G}} \) (VDS=1V) measured from (a) narrow-OD nMOS and (b) multi-OD nMOS. \(f_t \) is calculated from \(g_m \).

Fig. 3 (a) The measured and calculated \(f_t \) versus \(V_{\text{G}} \) (VDS=1.0V) and (b) the gate capacitances \(C_G \) versus \(V_{\text{G}} \) extracted from Im\(Y_{\text{opt}} \) for narrow-OD and standard nMOS.

Fig. 4 (a) Measured and calculated \(f_t \) vs. \(V_{\text{G}} \) (VDS=1.0V) (b) \(C_G \) vs. \(V_{\text{G}} \) extracted from Im\(Y_{\text{opt}} \) for multi-OD and standard nMOS.

Fig. 5 (a) The measured and calculated \(f_{\text{max}} \) versus \(V_{\text{G}} \) (VDS=1.0V) and (b) \(R_n \) versus \(V_{\text{G}} \) for narrow-OD nMOS (W1N64, W05N128) and W2N32.

Fig. 6 (a) The measured and calculated \(f_{\text{max}} \) versus \(V_{\text{G}} \) (VDS=1.0V) and (b) \(R_n \) versus \(V_{\text{G}} \) for multi-OD nMOS (OD4, OD8, OD16) and OD1.

Fig. 7 Noise parameters of narrow-OD nMOS (a) measured and calculated \(N_{\text{FB}} \), (b) \(R_n \), (c) Re\(Y_{\text{opt}} \), and (d) Im\(Y_{\text{opt}} \).

Fig. 8 Noise parameters of multi-OD nMOS (a) measured and calculated \(N_{\text{FB}} \), (b) \(R_n \), (c) Re\(Y_{\text{opt}} \), and (d) Im\(Y_{\text{opt}} \).