Study of Off-State Breakdown Improvement and Hot-Carrier Reliability in LDMOS Device with Gradual Junction Structure

Chin-Rung Yan1, Jone F Chen1, Chung-Yi Lin2, Hao-Tang Hsiu2, Yu-Chieh Liao2, Min-Ti Yang2, Ying-Chia Lin2, Huei-Haurng Chen2

1 Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
Phone: +886-3-579-5000 ext.8709 E-mail: darren0613@gmail.com
2 Device Technology Group, Powerchip Technology Corp., Hsin-Chu, Taiwan

1. Introduction

Both off-state breakdown voltage (V_{BD}) and on-resistance (Ron) performances are the major considerations in designing LDMOS devices. However, these two parameters are usually trade-off with each other. In this work, a gradual junction structure is used to improve off-state V_{BD} without sacrificing device drivability. Experimental data of V_{BD} improvement and hot-carrier induced device degradation are presented and discussed. In addition, TCAD simulation results of electric field and impact ionization (I-I) rate are analyzed to explain the experimental data. Finally, electrical safe operating area (E-SOA) of devices is investigated. The device with gradual junction structure has wider E-SOA range.

2. Experiment

The dimensions of W/L and gate oxide thickness of the device used in this work are 10/0.9 \textmu m and 40 nm, respectively. Fig. 1(a) and (b) show the schematic process flows to fabricate LDMOS device with traditional and gradual junction structures, where the self-alignment implant of N- region experience uniform and gradual screen oxide thickness. The gradual screen oxide structure, which is formed by dual oxide (8nm and 40nm) process, leads to gradual junction profile in N- region of LDMOS device. After self-alignment implant of N- region, a n+ implant with a distance 0.75 \textmu m to the poly gate is defined.

(a) LDMOS with traditional LDD
(b) LDMOS with gradual LDD

\begin{center}
\begin{tabular}{c|c}
\hline
(a) & (b) \\
\hline
N+ implant to poly gate offset & N+ implant to poly gate offset \\
N- implant & N- implant \\
N+ poly gate & N+ poly gate \\
Thick oxide & Thin oxide \\
P-well & N- \\
N+ implant to poly gate offset & N+ implant to poly gate offset \\
N- implant & N- implant \\
N+ poly gate & N+ poly gate \\
Thick oxide & Thin oxide \\
P-well & N- \\
\hline
\end{tabular}
\end{center}

Fig. 1 (a) and (b), the schematic process flows to fabricate traditional and gradual junction structures are compared.

3. Experiment Results and Discussions

Fig. 2 shows the off-state breakdown characteristics for devices with traditional and gradual junction profile. Compared with the device with traditional structure, the device with gradual junction profile has better V_{BD} which is improved by about 1V. This improvement can be explained by TCAD simulation results in Fig. 2. At the same drain voltage (V_D), the device with gradual junction profile has smaller electrical field (~3.4\%) in outline A-A” than the device with traditional structure, leading to improved V_{BD}.

\begin{center}
\begin{tabular}{c|c}
\hline
\vspace{0.5cm}
\end{tabular}
\end{center}

Fig. 2, Comparison of V_{BD} data and E-field simulation results.

Fig. 3 shows substrate current (I_{SUB}) vs. gate voltage (V_G) characteristics under V_D = 12V, 13V, and 14V. At V_G is roughly 3V, the value of first I_{SUB} peak is about the same between devices with traditional and gradual junction profile. As the V_G is greater than roughly 6V, Kirk effect is becoming significant and I_{SUB} rises again. Such Kirk effect induced I_{SUB} rise is less severe in the device with gradual junction profile. The suppression of Kirk effect can be explained by TCAD simulation results. As seen in Fig. 3, at V_D = 14V and V_G = 7V, the device with gradual junction profile has smaller I-I rate, leading to smaller I_{SUB}.

\begin{center}
\begin{tabular}{c|c}
\hline
\vspace{0.5cm}
\end{tabular}
\end{center}

Fig. 3, Comparison of I_{SUB} data and impact ionization simulation results.
Since the device with gradual junction profile can suppress Kirk effect and leads to smaller I_{SUB} at high V_G bias, hot-carrier reliability of this device is likely to be improved. Fig. 4 shows the device parameter degradation of two kinds of device under 5000s of hot-carrier stress. The device parameters monitored are Ron and drivability current (I_{DTot}) which are measured at $V_D = 0.1V$ and $V_D = 8V$, respectively. For devices stressed under the same V_D and V_G ($V_D = 14V$, $V_G = 6V$), the device with gradual junction profile shows smaller Ron and I_{DTot} degradation. This result suggests that reduced I_{SUB} (under the same V_G) caused by suppression of I-I rate improves hot-carrier reliability. In order to realize the relation between I_{SUB} and device degradation, Fig. 4 also shows the amount of device degradation under 5000s stress for devices stressed at V_G bias (6V, 7V, and 7.5V) such that I_{SUB} rise caused by Kirk effect is significant. Stress data show that for devices stressed under the same I_{SUB}, the device with gradual junction profile produces more device degradation than the device with traditional structure. Remember that higher V_G bias is needed for the device with gradual junction profile to produce the same I_{SUB} (due to the suppression of Kirk effect). Thus, higher V_G results in more electron injection to the gate oxide, leading to more device degradation [2].

![Fig. 4](image)

Fig. 4, Comparison of device degradation data under hot-carrier stress.

Finally, the E-SOA of devices with traditional and gradual junction structures is investigated. Fig. 5(a) depicts the measurement setting to obtain E-SOA, where different V_G steps and 100ns pulse of V_D are applied to the device. The breakdown points are judged at a given V_G and pulsed V_D which causes device burned. Results in Fig. 5(b) reveal that the device with gradual junction profile has wider E-SOA range than the device with traditional structure. Improvement of E-SOA range is suggested to be caused by suppression of I_{SUB} and better latch-up behavior.

![Fig. 5(a)](image)

Fig. 5(a): Vg steps: 3.5 to 10V

![Fig. 5(b)](image)

Fig. 5(b): Constant Vg, 100ns pulse for Vd, Vs=Vb=0V

Fig. 5: the measurement setting and comparison of electrical safe operation area (E-SOA) data.

3. Conclusions

A simple mask modification which produces gradual screen oxide structure can be utilized to fabricate LDMOS devices with gradual junction profile in the N- region. In off-state operation, the device with gradual junction structure shows roughly 1V improvement in V_{BD} due to suppression of electrical field. In on-state operation, the device with gradual junction structure has less Kirk effect induced I_{SUB} rise due to suppression of I-I rate. For hot-carrier stress under the same V_G bias, the device with gradual junction structure exhibits less device parameter degradation due to suppression of I-I rate. For hot-carrier stress under the same I_{SUB}, however, the device with gradual junction structure produces worse device degradation. The reason responsible for this phenomenon is that higher V_G is needed to produce the same I_{SUB} leading to more electron injection to the gate oxide. Finally, experimental data show that the device with gradual junction structure has wider E-SOA range than the device with traditional structure.

Acknowledgements

We would like to thank Ariels Song and Shih-Hsiang Lin for measurement and simulation.

References
