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1. Introduction 

Real time recognition of objects or events is now be-
coming increasingly important in a number of intelligent 
systems such as unmanned surveillance systems, autono-
mous vehicle control, robotics, and so forth. Recognition 
results must be available in real time with minimum latency 
at very low power dissipation, and software solutions run-
ning on general purpose computers often fail to fulfill such 
requirements. In this paper, we will present a VLSI hard-
ware solution not only for real time recognition, but also for 
real time learning of a large number of samples.  

Recognition is understood as a classification problem as 
illustrated in Fig. 1. In supervised learning, a number of 
samples are stored in the system as templates for each per-
son with a proper class label such as Chaplin, Einstein etc., 
and when an unknown facial image is presented, the system 
searches for the best match image and outputs its class label 
as the recognition result. Usually such pattern matching is 
carried out using feature vectors representing original im-
ages in a compact format based on some algorithms like the 
one described in [1]. The VLSI chip developed in the pre-
sent work can carry out such a search in fully parallel proc-
essing and can yield the recognition result in as short as 3μs. 
for 64-dimension feature vectors at 25MHz of operation. 

In the case of unsupervised learning, a number of sam-
ple images are presented to the system without any class 
labels, and the system must categorize them by itself. 
Namely, the system must autonomously divide the entire 
samples into four clusters as in the example of Fig. 1. For 
such processing, K-means clustering algorithm is very 
widely used [2]. However, since it requests a number of 
distance calculations and iterations, real time response is 
very difficult to achieve in software solutions. Therefore, 
VLSI architectures dedicated to the K-means algorithm 
were developed, and VLSI chip implementation [3] and 
FPGA implementation [4] were reported. One of the algo-
rithmic problems of K-means is that K, the number of clus-
ters, must be determined in advance. Therefore, if we set 
K=5 in the example of Fig. 1, the samples are over seg-
mented. In the present work, not only the K-means cluster-
ing algorithm but also an autonomous K-number determin-
ing mechanism have been implemented on the same chip, in 
addition to the recognition function in the supervised learn-
ing mode. As a result, a very versatile VLSI architecture for 

recognition as well as for learning has been established. 
The architecture was implemented on Altera cyclone II 

FPGA (EP2C70896C6) chip and the real time K-means 
classification performance was experimentally demon-
strated using COIL-100 (Columbia University Object Image 
Library) database. 

 
Fig. 1.  Recognition as a classification problem. 

 
2. Adaptive K-means Learning Algorithm 

The quality of classification in the unsupervised learning 
is characterized by both small intra-class distances and large 
inter-class distances among samples. This means the sam-
ples in the same class (intra-class) are very similar to each 
other, while the samples in different classes (inter-class) are 
significantly different. Therefore the quality of K-means 
classification results can be evaluated using the Variance 
Ratio Criterion (VRC) [5] defined as follows: 
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Here N is the total number of samples; K is the number 
of classes. i and j represent class and sample indices, re-
spectively. GG is the global gravity center, Centroidi is the 
gravity center of class i. SNi is the number of samples in 
class i. SSb reflects the average inter-class distance, while 
SSw the average intra-class distance. The (N-K)/(K-1) term 
is introduced to normalize the value with respect to K. The 
adaptive K-means learning algorithm determines the proper 
K value by computing the VRC for K=2, 3 … sequentially 
until it reaches the absolute or local maximum. 

 
3. Hardware Architecture 

Fig. 2(a) shows the system architecture. Dedicated par-

-148-

Extended Abstracts of the 2012 International Conference on Solid State Devices and Materials, Kyoto, 2012, pp148-149

PS-5-4



allel processing circuitries are developed for classification. 
All these circuitries are controlled by the system controller 
in which a finite state machine (FSM) is used as shown in 
Fig. 2(c). At the beginning, the FSM chooses the GG and 
the sample vector farthest from the GG as two initial cen-
troids. Then start to cluster with K=2 and evaluate the VRC 
to decide whether to start a new interation for K=3 or not. 
The VRC is calculated after each iteration to see whether a 
proper K value has been reached or not. As shown in Fig. 
2(a), the feature vectors of all samples are preserved in the 
SRAM. There are two separate paths for feature vectors to 
be processed to generate SSb and SSw. In the first path, fea-
ture vectors are directly transferred to CIDM, and processed 
by LA and GCU to generate each centroid. At the same time, 
VRC (Fig. 2(b)) unit calculates the SSb in eq. (2). In the 
second path, DUs calculate the distance between each fea-
ture vector and each centroid, and update the contents in the 
cluster register (CID Reg) and the distance register (Dis-
tance Reg) when the distance is smaller than the stored val-
ue. After this, the system accumulates the values of distance 
registers to generate the SSw by LA and GCU. With SSb 
and SSw, the system calculates the VRC according to the 
present K. Here the term (N-K) is approximated as N be-
cause N>>K. If the present VRC value is smaller than the 
last VRC value, which means last VRC value reaches the 
local maximum and the process is terminated; else it selects 
the farthest vector as a new centroid using WTA unit and 
continues clustering for K+1. 
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Fig. 2.  Hardware architecture of the system: (a) global structure; 
(b) hardware structure of VRC; (c) flow chart of system controller. 
 
4. Experimental Results 

64 sample images (in 8 classes and 8 samples per class) 
selected from the COIL-100 database are used for verifying 
the performance of this system. The resolution of sample 
images is resampled to 64 × 64 pixels for generating the 

PPED vectors [1]. Fig. 3 shows representative images from 
each class. 

Fig.4 shows the measured waveforms from oscilloscope. 
When clustering starts, the system executes the FSM de-
scribed in Fig. 2(c) for K=2, 3…, up to K=9. Then the sys-
tem stops; which indicates that K=8 has reached the maxi-
mum VRC value. Fig. 5 shows measurement results cap-
tured using the embedded Altera SignalTap Logic Analyzer. 
The VRC value is calculated for each K; and CID_Reg0 and 
CID_Reg63 present the cluster label change of sample0 and 
sample63 with the target class number K respectively. It is 
worth noting that VRC reaches its first local maximum 
when K=2, which is much smaller than the second one 
when K=8. To trade off between the speed performance and 
the global optimum value, two local maxima in limited K 
values are searched, and the larger one is chosen as the final 
result. The system clock is 25 MHz, and the total processing 
time is less than 0.3ms. Thanks to the scalable parallel pro-
cessing structure, this architecture can be simply extended 
for processing larger number of samples with same compu-
tation time. 

 
Fig. 3.  Test samples belonging to 8 classes. 

 

 
Fig. 4.  Measured waveforms from oscilloscope. 

 
5. Conclusion 

A VLSI recognition system equipped with an adaptive 
K-means learning capability has been developed and the 
operation has been experimentally demonstrated. The eight 
category images taken from COIL-100 data base have been 
successfully classified into eight categories in less than 0.3 
ms using the autonomous K-value determination function 
installed in the system. 
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Fig. 5.  Measured waveforms from Altera SigntalTap Logic Analyzer. 
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