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1 Introduction

InAs is an important narrow-gap compound semicon-
ductor with potential applications to ultra-high-speed
electron devices. In particular, heterogeneous integration
of InAs devices on foreign host substrates with low dielec-
tric constants and high resistivities [1,2] has advantages
for high-speed applications. Since InAs metal-insulator-
semiconductor field-effect transistors (MISFETS) are im-
portant devices for such applications, controlling of
insulator-InAs interfaces, in particular for high-k insu-
lators, is an important technological issue. We previ-
ously investigated sputtering-deposited AIN as an im-
portant high-k insulator, with a possible high break-
down field 2 10 MV/cm, a high dielectric constant
~ 9, which are comparable to those of AlyO3, and also
a high thermal conductivity, ~ 10 times higher than
that of Al,O3z. As a result, we realized a low interface
state density and reduction of frequency dispersion in
C-V characteristics for AIN/Ge/GaAs(001) MIS struc-
tures, and analyzed their interfaces by X-ray photoelec-
tron spectroscopy (XPS) [3]. In this work, we fabricated
AIN/InAs(001) and AIN/Ge/InAs(001) MIS structures,
and their insulator-semiconductor interfaces are analyzed
by angle-resolved XPS (ARXPS).

2 Experiments and Results

We fabricated AIN/InAs(001) and AIN/Ge/InAs(001)
MIS structures as follows. For Si-doped n-InAs(001) sub-
strates (n = 5.0 x 10'® cm?3) with backside Ohmic Ni/Au
electrodes, we carried out a surface oxide removal using
Semicoclean followed by a sulfur treatment using ammo-
nium sulfide solution, which is effective to prevent sur-
face oxidation. Subsequently, 18-nm thickness AIN was
directly deposited on InAs(001) for the AIN/InAs(001),
by RF magnetron sputtering at room temperature in No
mixed (3 %) Ar ambience using an AIN target. On the
other hand, for the AIN/Ge/InAs(001), 1-nm thickness
Ge interlayer was deposited by electron-beam evapora-
tion, followed by the 18-nm thickness AIN sputtering de-
position. After annealing in Ho-mixed (10 %) Ar ambi-
ence, the formation of 100-ym diameter Ni/Au gate elec-
trodes on the AIN insulator completed the MIS structure.

Both MIS structures show good insulating proper-
ties. Figure 1 shows frequency-dependent C-V char-
acteristics of the MIS structures, in which we observe
small frequency dispersions attributed to the insulator-
semiconductor interface states. In order to elucidate the
interface states, we carried out an analysis using the con-
ductance method [4] based on an equivalent circuit con-
sisting of a semiconductor capacitance Cs, an interface

state capacitance Cj, and an interface state conductance
G in parallel, with an insulator capacitance Cy connected
in series. As the result, we obtain G;/w maps shown
in Figs. 2(a) and (b), where w is the angular frequency.
From the maps, Gj/w of AIN/Ge/InAs(001) is smaller
than that of AIN/InAs(001), suggesting that the inter-
face state density of the former is lower than that of the
latter.

In order to analyze the interfaces, we carried out
ARXPS measurements of four samples, InAs(001),
Ge(1 nm)/InAs(001), AIN(1 nm)/Ge(1 nm)/InAs(001),
and AIN(1 nm)/InAs(001), where all the sample prepara-
tion processes follow the MIS structure fabrication. Ow-
ing to the thin AIN and Ge interlayers, the XPS spectra
include the information of not only the surface but also
the interface. XPS spectra for smaller take-off angle 6
reflect shallower region, while those for larger 6 reflect
deeper region. Figure 3(a) shows As3d XPS spectra for
0 = 35°, exhibiting no As-O bonding for all the sam-
ples. Indd XPS spectra for § = 35° are also shown in
Fig. 3(b). In spite of a small ratio of In-O bonding in
InAs(001), we observe a large ratio of In-O bonding in
AIN/InAs(001). This indicates that In oxidation takes
place during the initial stage of the AIN deposition, de-
spite of non-oxide deposition, which may be due to oxy-
gen or water adsorbed on the surface. However, In-O
bonding is significantly reduced for Ge/InAs(001) and
AIN/Ge/InAs(001), suggesting that the Ge interlayer
prevents the surface oxidation. Figure 4(a) shows Indd
spectra of AIN/InAs(001) for § = 20, 35, 45, and 75°.
Since In-O bonding ratio decreases with increasing 0, we
conclude that the shallow region is more oxidized. On the
other hand, In4d spectra of AIN/Ge/InAs(001) shown in
Fig. 4(b) exhibit weak angle dependence of In-O bond-
ing ratio due to the prevention of the surface oxidation
by the Ge interlayer. Figure 5 shows the relation between
As3d/Indd intensity ratio and In-As/In4d or In-O/Indd
intensity ratios, obtained from the ARXPS results. We
observe a negative correlation between As3d/Indd and
In-O/In4d, and a positive correlation between As3d/In4d
and In-As/In4d. This indicates a correlation between As
deficiency and In-O bonding. During the initial stage
of the AIN sputtering deposition on InAs(001), As defi-
ciency is increased, and In-As bonding changes to In-O
bonding, while As oxidation does not take place. On the
other hand, the Ge interlayer prevents increase in As de-
ficiency and oxidation of In during sputtering deposition.
Therefore, the suggested lower interface state density of
AIN/Ge/InAs(001) can be attributed to the suppression
of the As deficiency and the In-O bonding.
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3 Summary

We fabricated AIN/InAs(001) and AIN/Ge/InAs(001)
MIS structures, and their insulator-semiconductor inter-
faces are analyzed by ARXPS. From the conductance
method, it is suggested that the interface state density of
AIN/Ge/InAs(001) is lower than that of AIN/InAs(001).
The ARXPS analysis shows that the lower interface state
density can be attributed to the suppression of the As de-
ficiency and In-O bonding.
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Fig. 1: Frequency-dependent C-V characteristics of (a)
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Fig. 3: XPS As3d sprctra (a) and Indd spectra

(b) of InAs(001), Ge/InAs(001), AIN/Ge/InAs(001), and
AIN/InAs(001), for take-off angle 6 = 35°.
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AIN/InAs(001) and (b) AIN/Ge/InAs(001) MIS structures.
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Fig. 2: Gi/w maps for (a) AIN/InAs(001) and (b)

AIN/Ge/InAs(001) MIS structures.

Fig. 4:

AIN/Ge/InAs(001) (b), for 8 = 20, 35, 45, and 75°.
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Fig. 5: Relation between As3d/Indd ratio and In-O/In4d or

In-As/Indd ratios.
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